物理知識點大全

在平凡的學習生活中,大家最不陌生的就是知識點吧!知識點也可以理解爲考試時會涉及到的知識,也就是大綱的分支。那麼,都有哪些知識點呢?以下是小編收集整理的物理知識點,供大家參考借鑑,希望可以幫助到有需要的朋友。

物理知識點大全

物理知識點 篇1

1、1638年,意大利物理學家伽利略在《兩種新科學的對話》中用科學推理論證重物體和輕物體下落一樣快;並在比薩斜塔做了兩個不同質量的小球下落的實驗,證明了他的觀點是正確的,了古希臘學者亞里士多德的觀點(即:質量大的小球下落快是錯誤的);

2、1654年,德國的馬德堡市做了一個轟動一時的實驗——馬德堡半球實驗;

3、1687年,英國科學家牛頓在《自然哲學的數學原理》著作中提出了三條運動定律(即牛頓三大運動定律)。

4、17世紀,伽利略通過構思的理想實驗指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;得出結論:力是改變物體運動的原因,了亞里士多德的觀點:力是維持物體運動的原因。同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿着一條直線運動,既不會停下來,也不會偏離原來的方向。

5、英國物理學家胡克對物理學的貢獻:胡克定律;經典題目:胡克認爲只有在一定的條件下,彈簧的彈力才與彈簧的形變量成正比(對)

6、1638年,伽利略在《兩種新科學的對話》一書中,運用觀察—假設—數學推理的方法,詳細研究了拋體運動。17世紀,伽利略通過理想實驗法指出:在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去;同時代的法國物理學家笛卡兒進一步指出:如果沒有其它原因,運動物體將繼續以同速度沿着一條直線運動,既不會停下來,也不會偏離原來的方向。

7、人們根據日常的觀察和經驗,提出“地心說”,古希臘科學家托勒密是代表;而波蘭天文學家哥白尼提出了“日心說”,大膽反駁地心說。

8、17世紀,德國天文學家開普勒提出開普勒三大定律;

9、牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤實驗裝置比較準確地測出了引力常量;

10、1846年,英國劍橋大學學生亞當斯和法國天文學家勒維烈(勒維耶)應用萬有引力定律,計算並觀測到海王星,1930年,美國天文學家湯苞用同樣的計算方法發現冥王星。

11、我國宋朝發明的火箭是現代火箭的鼻祖,與現代火箭原理相同;但現代火箭結構複雜,其所能達到的速度主要取決於噴氣速度和質量比(火箭開始飛行的質量與燃料燃盡時的質量比);俄國科學家齊奧爾科夫斯基被稱爲近代火箭之父,他首先提出了多級火箭和慣性導航的概念。多級火箭一般都是三級火箭,我國已成爲掌握載人航天技術的第三個國家。

12、1957年10月,蘇聯發射第一顆人造地球衛星;1961年4月,世界第一艘載人宇宙飛船“東方1號”帶着尤里加加林第一次踏入太空。

13、20世紀初建立的量子力學和愛因斯坦提出的狹義相對論表明經典力學不適用於微觀粒子和高速運動物體。

14、17世紀,德國天文學家開普勒提出開普勒三定律;牛頓於1687年正式發表萬有引力定律;1798年英國物理學家卡文迪許利用扭秤裝置比較準確地測出了引力常量(體現放大和轉換的思想);1846年,科學家應用萬有引力定律,計算並觀測到海王星。

選修部分:(選修3—1、3—2、3—3、3—4、3—5)

二、電磁學:(選修3—1、3—2)

1、1785年法國物理學家庫侖利用扭秤實驗發現了電荷之間的相互作用規律——庫侖定律,並測出了靜電力常量k的值。

2、1752年,富蘭克林在費城通過風箏實驗驗證閃電是放電的一種形式,把天電與地電統一起來,併發明避雷針。

3、1837年,英國物理學家法拉第最早引入了電場概念,並提出用電場線表示電場。

4、1913年,美國物理學家密立根通過油滴實驗精確測定了元電荷e電荷量,獲得諾貝爾獎。

5、1826年德國物理學家歐姆(1787—1854)通過實驗得出歐姆定律。

6、1911年,荷蘭科學家昂尼斯(或昂納斯)發現大多數金屬在溫度降到某一值時,都會出現電阻突然降爲零的現象——超導現象。

7、19世紀,焦耳和楞次先後各自獨立發現電流通過導體時產生熱效應的規律,即焦耳——楞次定律。

8、1820年,丹麥物理學家奧斯特發現電流可以使周圍的小磁針發生偏轉,稱爲電流磁效應。

9、法國物理學家安培發現兩根通有同向電流的平行導線相吸,反向電流的平行導線則相斥,同時提出了安培分子電流假說;並總結出安培定則(右手螺旋定則)判斷電流與磁場的相互關係和左手定則判斷通電導線在磁場中受到磁場力的方向。

10、荷蘭物理學家洛侖茲提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點。

11、英國物理學家湯姆生髮現電子,並指出:陰極射線是高速運動的電子流。

12、湯姆生的學生阿斯頓設計的質譜儀可用來測量帶電粒子的質量和分析同位素。

13、1932年,美國物理學家勞倫茲發明了迴旋加速器能在實驗室中產生大量的高能粒子。(動能僅取決於磁場和D形盒直徑。帶電粒子圓周運動週期與高頻電源的週期相同;但當粒子動能很大,速率接近光速時,根據狹義相對論,粒子質量隨速率顯著增大,粒子在磁場中的迴旋週期發生變化,進一步提高粒子的速率很困難。

14、1831年英國物理學家法拉第發現了由磁場產生電流的條件和規律——電磁感應定律。

15、1834年,俄國物理學家楞次發表確定感應電流方向的定律——楞次定律。

16、1835年,美國科學家亨利發現自感現象(因電流變化而在電路本身引起感應電動勢的現象),日光燈的工作原理即爲其應用之一,雙繞線法制精密電阻爲消除其影響應用之一。

物理知識點 篇2

一、運動的描述

1.物體模型用質點,忽略形狀和大小;地球公轉當質點,地球自轉要大小。物體位置的變化,準確描述用位移,運動快慢S比t ,a用Δv與t 比。

2.運用一般公式法,平均速度是簡法,中間時刻速度法,初速度零比例法,再加幾何圖像法,求解運動好方法。自由落體是實例,初速爲零a等g.豎直上拋知初速,上升最高心有數,飛行時間上下回,整個過程勻減速。中心時刻的速度,平均速度相等數;求加速度有好方,ΔS等a T平方。

3.速度決定物體動,速度加速度方向中,同向加速反向減,垂直拐彎莫前衝。

二、力

1.解力學題堡壘堅,受力分析是關鍵;分析受力性質力,根據效果來處理。

2.分析受力要仔細,定量計算七種力;重力有無看提示,根據狀態定彈力;先有彈力後摩擦,相對運動是依據;萬有引力在萬物,電場力存在定無疑;洛侖茲力安培力,二者實質是統一;相互垂直力最大,平行無力要切記。

3.同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明;兩力合力小和大,兩個力成q角夾 ,平行四邊形定法;合力大小隨q變 ,只在最大最小間,多力合力合另邊。

多力問題狀態揭,正交分解來解決,三角函數能化解。

4.力學問題方法多,整體隔離和假設;整體只需看外力,求解內力隔離做;狀態相同用整體,否則隔離用得多;即使狀態不相同,整體牛二也可做;假設某力有或無,根據計算來定奪;極限法抓臨界態,程序法按順序做;正交分解選座標,軸上矢量儘量多。

三、牛頓運動定律

1.F等ma,牛頓二定律,產生加速度,原因就是力。

合力與a同方向,速度變量定a向,a變小則u可大 ,只要a與u同向。

2.N、T等力是視重,mg乘積是實重; 超重失重視視重,其中不變是實重;加速上升是超重,減速下降也超重;失重由加降減升定,完全失重視重零

四、曲線運動、萬有引力

1.運動軌跡爲曲線,向心力存在是條件,曲線運動速度變,方向就是該點切線。

2.圓周運動向心力,供需關係在心裏,徑向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心離。

3.萬有引力因質量生,存在於世界萬物中,皆因天體質量大,萬有引力顯神通。衛星繞着天體行,快慢運動的衛星,均由距離來決定,距離越近它越快,距離越遠越慢行,同步衛星速度定,定點赤道上空行。

五、機械能與能量

1.確定狀態找動能,分析過程找力功,正功負功加一起,動能增量與它同。

2.明確兩態機械能,再看過程力做功,“重力”之外功爲零,初態末態能量同。

3.確定狀態找量能,再看過程力做功。有功就有能轉變,初態末態能量同。

六、電場 〖選修3--1

1.庫侖定律電荷力,萬有引力引場力,好像是孿生兄弟,kQq與r平方比。

2.電荷周圍有電場,F比q定義場強。KQ比r2點電荷,U比d是勻強電場。

電場強度是矢量,正電荷受力定方向。描繪電場用場線,疏密表示弱和強。

場能性質是電勢,場線方向電勢降。 場力做功是qU ,動能定理不能忘。

4.電場中有等勢面,與它垂直畫場線。方向由高指向低,面密線密是特點。

七、恆定電流〖選修3-1

1.電荷定向移動時,電流等於q比 t。自由電荷是內因,兩端電壓是條件。

正荷流向定方向,串電流表來計量。電源外部正流負,從負到正經內部。

2.電阻定律三因素,溫度不變才得出,控制變量來論述,r l比s 等電阻。

電流做功U I t , 電熱I平方R t 。電功率,W比t,電壓乘電流也是。

3.基本電路聯串並,分壓分流要分明。複雜電路動腦筋,等效電路是關鍵。

4.閉合電路部分路,外電路和內電路,遵循定律屬歐姆。

路端電壓內壓降,和就等電動勢,除於總阻電流是。

八、磁場〖選修3-1

1.磁體周圍有磁場,N極受力定方向;電流周圍有磁場,安培定則定方向。

2.F比I l是場強,φ等B S 磁通量,磁通密度φ比S,磁場強度之名異。

安培力,相互垂直要注意。

4.洛侖茲力安培力,力往左甩別忘記。

九、電磁感應〖選修3-2

1.電磁感應磁生電,磁通變化是條件。迴路閉合有電流,迴路斷開是電源。

感應電動勢大小,磁通變化率知曉。

2.楞次定律定方向,阻礙變化是關鍵。導體切割磁感線,右手定則更方便。

3.楞次定律是抽象,真正理解從三方,阻礙磁通增和減,相對運動受反抗,自感電流想阻擋,能量守恆理應當。楞次先看原磁場,感生磁場將何向,全看磁通增或減,安培定則知i 向。

十、交流電〖選修3-2

1.勻強磁場有線圈,旋轉產生交流電。電流電壓電動勢,變化規律是絃線。

中性面計時是正弦,平行面計時是餘弦。

ω是最大值,有效值用熱量來計算。

3.變壓器供交流用,恆定電流不能用。

理想變壓器,初級U I值,次級U I值,相等是原理。

電壓之比值,正比匝數比;電流之比值,反比匝數比。

運用變壓比,若求某匝數,化爲匝伏比,方便地算出。

遠距輸電用,升壓降流送,否則耗損大,用戶後降壓。

十一、氣態方程〖選修3-3

研究氣體定質量,確定狀態找參量。絕對溫度用大T,體積就是容積量。

壓強分析封閉物,牛頓定律幫你忙。狀態參量要找準,PV比T是恆量。

十二、熱力學定律

1.第一定律熱力學,能量守恆好感覺。內能變化等多少,熱量做功不能少。

正負符號要準確,收入支出來理解。對內做功和吸熱,內能增加皆正值;對外做功和放熱,內能減少皆負值。

2.熱力學第二定律,熱傳遞是不可逆,功轉熱和熱轉功,具有方向性不逆。

十三、機械振動〖選修3--4

1.簡諧振動要牢記,O爲起點算位移,回覆力的方向指,始終向平衡位置,

大小正比於位移,平衡位置u大極。

2.O點對稱別忘記,振動強弱是振幅,振動快慢是週期,一週期走4A路,單擺週期l比g,再開方根乘2p,秒擺週期爲2秒,擺長約等長1米。

到質心擺長行,單擺具有等時性。

3.振動圖像描方向,從底往頂是向上,從頂往底是下向;振動圖像描位移,頂點底點大位移,正負符號方向指。

十四、機械波〖選修3--4

1.左行左坡上,右行右坡上。峯點谷點無方向。

2.順着傳播方向吧,從谷往峯想上爬,腳底總得往下蹬,上下振動遷不動。

3.不同時刻的圖像,Δt四分一或三, 質點動向疑惑散,S等v t派用場。

十五、光學〖選修3-4

1.自行發光是光源,同種均勻直線傳。若是遇見障礙物,傳播路徑要改變。

反射折射兩定律,折射定律是重點。光介質有折射率,(它的)定義是正弦比值,還可運用速度比,波長比值也使然。

2.全反射,要牢記,入射光線在光密。入射角大於臨界角,折射光線無處覓。

十六、物理光學

1.光是一種電磁波,能產生干涉和衍射。衍射有單縫和小孔,干涉有雙縫和薄膜。單縫衍射中間寬,干涉(條紋)間距差不多。小孔衍射明暗環,薄膜干涉用處多。它可用來測工件,還可製成增透膜。泊松亮斑是衍射,干涉公式要把握。〖選修3-4

2.光照金屬能生電,入射光線有極限。光電子動能大和小,與光子頻率有關聯。光電子數目多和少,與光線強弱緊相連。光電效應瞬間能發生,極限頻率取決逸出功。〖選修3-5

十七、動量 〖選修3--5

1.確定狀態找動量,分析過程找衝量,同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明。

2.確定狀態找動量,分析過程找衝量,外力衝量若爲零,初態末態動量同。

十八、原子原子核〖選修3-5

1.原子核,中央站,電子分層圍它轉;向外躍遷爲激發,輻射光子向內遷;光子能量hn,能級差值來計算。

2.原子核,能改變,αβ兩衰變。Α粒是氦核,電子流是β射線。

γ光子不單有,伴隨衰變而出現。鈾核分開是裂變,中子撞擊是條件。

裂變可造原子彈,還可用它來發電。輕核聚合是聚變,溫度極高是條件。

變可以造氫彈,還是太陽能量源;和平利用前景好,可惜至今未實現。

物理知識點 篇3

摘要:《浮力》一課,是前面學過力學知識的延伸與擴展,是國中力學部分的重點與難點,也是會考熱點知識。它綜合運用到了各方面的知識,如,力的測量、重力、二力平衡、二力的合成、密度、壓力、壓強等重要知識。爲了讓學生更好地理解本節課的教學內容,主要採用學生實驗、教師演示實驗、學生探究實驗、教師講解分析等手段進行教學。

關鍵詞:浮力;會考熱點;實驗

一、引課採用生活實例激起學習的興趣,多媒體開闊視野

在引入新課時,通過把乒乓球、木塊、泡沫、空礦泉水瓶等物體放入水中,讓學生分析這些物體爲什麼會漂浮在水面上?通過多媒體圖片展示遼寧號、飛艇、熱氣球、潛水器等圖片,知道不僅在液體裏面有一個向上的力,氣體中也有一個向上的力,引出本節要講的知識——浮力。(現實生活中的例子,激發學生的學習興趣,讓他們不斷地提出問題,產生好奇心。)

二、採用學生實驗,播放視頻資料,演示實驗,教師講解分析浮力產生的原因

1.感知浮力的存在

學生提前準備水盆,給每個小組一個易拉罐,學生對實驗都比較興奮,不由自主地想動一動它。於是,我抓住他們的心理,對他們說:“想不想體驗一下,我們來試一種新的玩法。先用手按住空礦泉水瓶,慢慢向下壓,體會手的感覺。在體驗的過程中,發現了什麼?”實驗後,學生很自然地得出答案。(在盡情地“玩”的過程中有所體驗,有所發現,學生的動手能力和探究能力也隨之得到培養。)

2.測量浮力大小的方法

學生在體驗浮力存在時,也體驗到浮力的大小。漂在水面上的物體有浮力,下沉的物體有浮力嗎?由此,引起學生討論,自然引出演示實驗。分別在空氣中和水中,發現彈簧測力計的示數變小了。對學生提出爲什麼示數變小了,引起學生的思考,變小的原因是受到浮力的作用。(由淺入深,循循善誘,通過常見的現象引導學生思考。)知道測量浮力的方法,F浮=G-F拉。

3.浮力產生的原因

首先播放視頻,把一個用橡皮膜包裹的長方體框架浸沒在水中,引導學生觀察上下左右前後凹進的程度,學生會發現前後左右是一樣的,上下是不同的。

其次由老師講解;爲什麼四周相同,上下不同?因爲液體內部存在壓強,深度不同,壓強不同。(引導學生用學過的知識來分析)上表面深度小,壓強小,壓力也小(面積相同),所以液體對上下表面壓力不同,浮力產生的原因就是浸沒在水中的物體,上下表面的壓力差。

最後演示實驗驗證浮力產生的原因,將一隻塑料可樂瓶剪去底部,把一隻乒乓球放在瓶內,從上面倒入水,觀察到有少量水從乒乓球與瓶頸縫隙中流出,但乒乓球並不上浮,直到水倒滿後,乒乓球還沉在水底沒有浮起來,因爲乒乓球下部沒有水,所以沒有受到水對其向上的壓力,只有水對乒乓球豎直向下的壓力,所以乒乓球始終沉在水底。當用手指堵住瓶頸的出水口,使水慢慢流下並注滿後,由於乒乓球的下部有了水,所以受到了向上的浮力,由於乒乓球所受浮力大於其自身重力,所以乒乓球上浮。

三、決定浮力大小的因素——學生實驗體驗探究的過程,培養學生的動手、合作的能力

結合前面的學習,提出決定浮力大小的因素?學生開始猜想,總結學生的不同想法,提出幾個問題。(八年級學生猜想是不全面的,問題中有老師自己的引導。)(1)怎樣判斷浮力大小與物體重力是否有關?(2)怎樣判斷浮力大小與物質密度大小是否有關?(3)怎樣判斷浮力大小與物體形狀是否有關?……給學生提供以下參考實驗器材:溢水杯、燒杯、彈簧測力記、體積相同的鐵塊和銅塊,以及塑料塊和橡皮泥等。提示學生用“控制變量法”進行實驗設計,指導學生自己設計實驗。然後根據修正的步驟探究課題,設計記錄實驗數據表格並交流,最後得出實驗結論。

讓學生從現有的知識水平出發,通過體驗並不斷地思考,提出可能影響浮力大小的因素。本節課讓學生動手實驗探究貫穿整節課,從而對浮力有了最直接的感性認識,使學生進一步理解浮力的定義、產生的原因以及影響浮力大小的因素,這樣層層推進,分散難點。

物理知識點 篇4

1、熱現象:與溫度有關的現象叫做熱現象。

2、溫度:物體的冷熱程度。

3、溫度計:要準確地判斷或測量溫度就要使用的專用測量工具。

4、溫標:要測量物體的溫度,首先需要確立一個標準,這個標準叫做溫標。

(1)攝氏溫標:單位:攝氏度,符號℃,攝氏溫標規定,在標準大氣壓下,冰水混合物的溫度爲0℃;沸水的溫度爲100℃。中間100等分,每一等分表示1℃。

(a)如攝氏溫度用t表示:t=25℃

(b)攝氏度的符號爲℃,如34℃

(c)讀法:37℃,讀作37攝氏度;–4.7℃讀作:負4.7攝氏度或零下4.7攝氏度。

(2)熱力學溫標:在國際單位之中,採用熱力學溫標(又稱開氏溫標)。單位:開爾文,符號:K。在標準大氣壓下,冰水混合物的溫度爲273K。

熱力學溫度T與攝氏溫度t的換算關係:T=(t+273)K。0K是自然界的低溫極限,只能無限接近永遠達不到。

(3)華氏溫標:在標準大氣壓下,冰的熔點爲32℉,水的沸點爲212℉,中間180等分,每一等分表示1℉。華氏溫度F與攝氏溫度t的換算關係:F=5t+32

5、溫度計

(1)常用溫度計:構造:溫度計由內徑細而均勻的玻璃外殼、玻璃泡、液麪、刻度等幾部分組成。原理:液體溫度計是根據液體熱脹冷縮的性質製成的。常用溫度計內的液體有水銀、酒精、煤油等。

6、正確使用溫度計

(1)先觀察它的測量範圍、最小刻度、零刻度的位置。實驗溫度計的範圍爲-20℃-110℃,最小刻度爲1℃。體溫溫度計的範圍爲35℃-42℃,最小刻度爲0.1℃。

(2)估計待測物的溫度,選用合適的溫度計。

(3)溫度及的玻璃泡要與待測物充分接觸(但不能接觸容器底與容器側面)。

(4)待液麪穩定後,才能讀數。(讀數時溫度及不能離開待測物)。

物理知識點 篇5

1.功

(1)功的定義:力和作用在力的方向上通過的位移的乘積。是描述力對空間積累效應的物理量,是過程量。

定義式:W=F?s?cosθ,其中F是力,s是力的作用點位移(對地),θ是力與位移間的夾角。

(2)功的大小的計算方法:

①恆力的功可根據W=F?S?cosθ進行計算,本公式只適用於恆力做功。②根據W=P?t,計算一段時間內平均做功。③利用動能定理計算力的功,特別是變力所做的功。④根據功是能量轉化的量度反過來可求功。

(3)摩擦力、空氣阻力做功的計算:功的大小等於力和路程的乘積。

發生相對運動的兩物體的這一對相互摩擦力做的總功:W=fd(d是兩物體間的相對路程),且W=Q(摩擦生熱)

2.功率

(1)功率的概念:功率是表示力做功快慢的物理量,是標量。求功率時一定要分清是求哪個力的功率,還要分清是求平均功率還是瞬時功率。

(2)功率的計算①平均功率:P=W/t(定義式)表示時間t內的平均功率,不管是恆力做功,還是變力做功,都適用。②瞬時功率:P=Fvcosα P和v分別表示t時刻的功率和速度,α爲兩者間的夾角。

(3)額定功率與實際功率:額定功率:發動機正常工作時的最大功率。實際功率:發動機實際輸出的功率,它可以小於額定功率,但不能長時間超過額定功率。

(4)交通工具的啓動問題通常說的機車的功率或發動機的功率實際是指其牽引力的功率。

①以恆定功率P啓動:機車的運動過程是先作加速度減小的加速運動,後以最大速度vm=P/f作勻速直線運動。

②以恆定牽引力F啓動:機車先作勻加速運動,當功率增大到額定功率時速度爲v1=P/F,而後開始作加速度減小的加速運動,最後以最大速度vm=P/f作勻速直線運動。

3.動能:物體由於運動而具有的能量叫做動能。表達式:Ek=mv2/2

(1)動能是描述物體運動狀態的物理量。

(2)動能和動量的區別和聯繫

①動能是標量,動量是矢量,動量改變,動能不一定改變;動能改變,動量一定改變。

②兩者的物理意義不同:動能和功相聯繫,動能的變化用功來量度;動量和衝量相聯繫,動量的變化用衝量來量度。③兩者之間的大小關係爲EK=P2/2m

4.動能定理:外力對物體所做的總功等於物體動能的變化。

表達式:

(1)動能定理的表達式是在物體受恆力作用且做直線運動的情況下得出的。但它也適用於變力及物體作曲線運動的情況。(2)功和動能都是標量,不能利用矢量法則分解,故動能定理無分量式。

(3)應用動能定理只考慮初、末狀態,沒有守恆條件的限制,也不受力的性質和物理過程的變化的影響。所以,凡涉及力和位移,而不涉及力的作用時間的動力學問題,都可以用動能定理分析和解答,而且一般都比用牛頓運動定律和機械能守恆定律簡捷。

(4)當物體的運動是由幾個物理過程所組成,又不需要研究過程的中間狀態時,可以把這幾個物理過程看作一個整體進行研究,從而避開每個運動過程的具體細節,具有過程簡明、方法巧妙、運算量小等優點。

5.重力勢能

(1)定義:地球上的物體具有跟它的高度有關的能量,叫做重力勢能。

①重力勢能是地球和物體組成的系統共有的,而不是物體單獨具有的。②重力勢能的大小和零勢能面的選取有關。③重力勢能是標量,但有"+"、"-"之分。

(2)重力做功的特點:重力做功只決定於初、末位置間的高度差,與物體的運動路徑無關。WG=mgh。

(3)做功跟重力勢能改變的關係:重力做功等於重力勢能增量的負值。

6.彈性勢能:物體由於發生彈性形變而具有的能量。

7.機械能守恆定律

(1)動能和勢能(重力勢能、彈性勢能)統稱爲機械能,E=Ek+Ep。

(2)機械能守恆定律的內容:在只有重力(和彈簧彈力)做功的情形下,物體動能和重力勢能(及彈性勢能)發生相互轉化,但機械能的總量保持不變。

(3)機械能守恆定律的表達式

(4)系統機械能守恆的三種表示方式:

①系統初態的總機械能E1等於末態的總機械能E2,即E1=E2

②系統減少的總重力勢能ΔEP減等於系統增加的總動能ΔEK增,即ΔEP減=ΔEK增

③若系統只有A、B兩物體,則A物體減少的機械能等於B物體增加的機械能,即ΔEA減=ΔEB增

[注意]解題時究竟選取哪一種表達形式,應根據題意靈活選取;需注意的是:選用①式時,必須規定零勢能參考面,而選用②式和③式時,可以不規定零勢能參考面,但必須分清能量的減少量和增加量。

(5)判斷機械能是否守恆的方法

①用做功來判斷:分析物體或物體受力情況(包括內力和外力),明確各力做功的情況,若對物體或系統只有重力或彈簧彈力做功,沒有其他力做功或其他力做功的代數和爲零,則機械能守恆。

②用能量轉化來判定:若物體系中只有動能和勢能的相互轉化而無機械能與其他形式的能的轉化,則物體系統機械能守恆。

③對一些繩子突然繃緊,物體間非彈性碰撞等問題,除非題目特別說明,機械能必定不守恆,完全非彈性碰撞過程機械能也不守恆。

8.功能關係

(1)當只有重力(或彈簧彈力)做功時,物體的機械能守恆。

(2)重力對物體做的功等於物體重力勢能的減少:WG=Ep1-Ep2。

(3)合外力對物體所做的功等於物體動能的變化:W合=Ek2-Ek1(動能定理)

(4)除了重力(或彈簧彈力)之外的力對物體所做的功等於物體機械能的變化:WF=E2-E1

9.能量和動量的綜合運用

動量與能量的綜合問題,是高中力學最重要的綜合問題,也是難度較大的問題。分析這類問題時,應首先建立清晰的物理圖景,抽象出物理模型,選擇物理規律,建立方程進行求解。這一部分的主要模型是碰撞。而碰撞過程,一般都遵從動量守恆定律,但機械能不一定守恆,對彈性碰撞就守恆,非彈性碰撞就不守恆,總的能量是守恆的,對於碰撞過程的能量要分析物體間的轉移和轉換。從而建立碰撞過程的能量關係方程。根據動量守恆定律和能量關係分別建立方程,兩者聯立進行求解,是這一部分常用的解決物理問題的方法。

物理知識點 篇6

1、焦耳定律反映了電流熱效應的規律,是能量轉化和守恆定律在電能和內能轉化中的體現。由公式Q=I2Rt可知,電流通過導體產生的熱量和電流強度I,電阻R及通電時間t有關,又因爲產生的熱量跟導體中電流強度的平方成正比,所以,電流強度大小的變化對產生熱量多少影響更大。

2、運用公式Q=I2Rt解決問題時,電流強度I的單位是安,電阻R的單位是歐,時間t的單位是秒,熱量Q的單位纔是焦耳,即各物理量代入公式前應該先統一單位。用電功公式和歐姆定律推導焦耳定律公式的前提是電能全部轉化爲內能。因爲電能還可能同時轉化爲其他形式,所以只有電流所做的功全部用來產生熱量,纔有或成立。

3、電熱器的原理是電流的熱效應,它表現的是電流通過導體都要發熱的現象,在這一現象中產生熱量的多少可運用焦耳定律計算。發熱體是電熱器的主要組成部分,它的作用是將電能轉變爲內能供人類使用。

常見考法

本知識點主要考查焦耳定律的應用,考察的形式主要是選擇題、填空題。

誤區提醒

1、 凡是有電流通過導體時,都可以用它來計算所產生的熱量;

2、 公式Q=UIt,只適用於純電阻電路,這時電流所做的功全部用來產生熱量,用它計算出來的結果纔是導體產生的熱量。

【典型例題】

例析:

在電源電壓不變時,爲了使電爐在相等的時間內發熱多些,可採取的措施是( )

A. 增大電熱絲的電阻 B. 減小電熱絲的電阻

C. 在電熱絲上並聯電阻 D. 在電熱絲上串聯電阻

解析:

有同學認爲應選(A),根據焦耳定律 Q=I2Rt,導體上放出的熱量與電阻成正比,所以要增加熱量,可增大電阻。這是由於對焦耳定律理解不全面的緣故。焦耳定律所闡述的導體上放出的熱量和某一個量的比例關係是在其他一些量不變的條件下才成立的,如放出的熱量和電阻成正比,是指電流強度和通電時間都不變的條件下熱量與電阻成正比,按題意,通電時間是相同的,但由於電源電壓是不變的,通過電熱絲的電流強度將隨着電阻的增大而減小,若再根據Q=I2Rt,將不易得出正確的結論。事實上,在電壓一定的條件下,根據

可知,減小電熱絲的電熱絲的電阻就可增大電功率,即在相同時間內發熱多些。

答案:B

物理知識點 篇7

光的反射

1、當光射到物體表面時,有一部份光會被物體反射回來,這種現象叫做光的反射。

2、我們看見不發光的物體是因爲物體反射的光進入了我們的眼睛。

3、反射定律:在反射現象中,反射光線、入射光線、法線都在同一個平面內;反射光線、入射光線分居法線兩側;反射角等於入射角。

注:入射角與反射角之間存在因果關係,反射角總是隨入射角的變化而變化,因而只能說反射角等於入射角,不能說成入射角等於反射角。(鏡面旋轉X°,反射光旋轉2X°)垂直入射時,入射角、反射角等於0°

4、反射現象中,光路是可逆的(互看雙眼)

5、利用光的反射定律畫一般的光路圖(要求會作):

確定入(反)射點;根據法線和反射面垂直,做出法線;根據反射角等於入射角,畫出入射光線或反射光線

兩種反射:鏡面反射和漫反射

(1)鏡面反射:平行光射到光滑的反射面上時,反射光仍然被平行的反射出去;

(2)漫反射:平行光射到粗糙的反射面上,反射光將沿各個方向反射出去;

(3)鏡面反射和漫反射的相同點:都是反射現象,都遵守反射定律;不同點是:反射面不同(一個光滑,一個粗糙),一個方向的入射光,鏡面反射的反射光只射向一個方向(刺眼);而漫反射射向四面八方;(下雨天向光走走暗處,背光走要走亮處,因爲積水發生鏡面反射,地面發生漫反射,電影屏幕粗糙、黑板要粗糙是利用漫反射把光射向四處,黑板上“反光”是發生了鏡面反射)

相信看過上面的物理知識點後,同學們已經熟知光的反射要領了吧。接下來還有更多更全的物理知識等着大家來記憶哦。

好學習吧。

物理知識點 篇8

1.水的密度:ρ水=1.0×103kg/m3=1 g/ cm3。

2. 1m3水的質量是1t,1cm3水的質量是1g。

3.利用天平測量質量時應"左物右碼"。

4.同種物質的密度還和狀態有關(水和冰同種物質,狀態不同,密度不同)。

5.增大壓強的方法:

增大壓力

減小受力面積

6.液體的密度越大,深度越深液體內部壓強越大。

7.連通器兩側液麪相平的條件:

同一液體

液體靜止

8.利用連通器原理(船閘、茶壺、回水管、水位計、自動飲水器、過水涵洞等)

9.大氣壓現象(用吸管吸汽水、覆杯試驗、鋼筆吸水、抽水機等)

10.馬德保半球試驗證明了大氣壓強的存在,托裏拆利試驗證明了大氣壓強的值。

11.浮力產生的原因:液體對物體向上和向下壓力的合力。

12.物體在液體中的三種狀態:漂浮、懸浮、沉底。

13.物體在漂浮和懸浮狀態下:浮力 = 重力。

14.物體在懸浮和沉底狀態下:V排 = V物。

15.阿基米德原理F浮= G排也適用於氣體(浮力的計算公式:F浮= ρ氣gV排也適用於氣體)。

物理知識點 篇9

電壓(U)

1.電壓:電壓是使電路中形成電流的原因,有電壓不一定有電流,但有電流則一定有電壓。

2.電源是提供電壓的裝置。

3.國際單位:伏特(V); 常用單位:千伏(KV),毫伏(mV); 1千伏=103伏=106毫伏。

4.測量電壓的儀表是:電壓表,使用規則:

①電壓表要並聯在電路中;

②電流要從“+”接線柱入,從“-”接線柱出;

③被測電壓不要超過電壓表的量程;

④在不超過電壓表量程的前提下,電壓表可以直接接在電源兩極。

5.實驗室常用電壓表有兩個量程:

①0~3V,每小格表示的電壓值是0.1V;

②0~15V,每小格表示的電壓值是0.5V。

記住:要測量誰的電壓,則電壓表就與誰並聯;反之,電壓表與誰並聯,則表示測量誰的電壓。

方法:在判斷電壓表與誰並聯時,主要觀察電壓表的兩個接線柱是直接接在哪個用電器的兩端。

6.熟記的電壓值:

①1節乾電池的電壓是1.5伏;

②1節鉛蓄電池電壓是2伏;

③家庭照明電壓爲220伏;

④人體的安全電壓是:不高於36伏;

⑤工業電壓是380伏。

上面對電壓知識的講解學習,相信能夠給同學們很好的幫助吧,希望同學們在考試中取得優異成績。

會考物理知識點:透鏡

關於物理中透鏡的知識,希望同學們很好的掌握下面的內容知識哦。

透鏡

透鏡:透明物質製成(一般是玻璃),至少有一個表面是球面的一部分,對光起折射作用的光學元件。

分類:1、凸透鏡:邊緣薄,中央厚。2、凹透鏡:邊緣厚,中央薄。

主光軸:通過兩個球心的直線。

光心:主光軸上有個特殊的點,通過它的光線傳播方向不變。(透鏡中心可認爲是光心)

焦點:凸透鏡能使跟主軸平行的光線會聚在主光軸上的一點,這點叫透鏡的焦點,用"F"表示

虛焦點:跟主光軸平行的光線經凹透鏡後變得發散,發散光線的反向延長線相交在主光軸上一點,這一點不是實際光線的會聚點,所以叫虛焦點。

焦距:焦點到光心的距離叫焦距,用" f "表示。

每個透鏡都有兩個焦點、焦距和一個光心。

透鏡對光的作用:

凸透鏡:對光起會聚作用。

凹透鏡:對光起發散作用。

通過上面對物理中透鏡知識點的內容講解學習,相信同學們已經能很好的掌握了吧,希望同學們認真的學習物理知識。

會考物理知識點:凸透鏡成像規律

下面是對物理中凸透鏡成像規律的內容講解,需要同學們很好的掌握下面的內容知識哦。

探究凸透鏡成像規律

實驗:從左向右依次放置蠟燭、凸透鏡、光屏。

1、調整它們的位置,使三者在同一直線(光具座不用);

2、調整它們,使燭焰的中心、凸透鏡的中心、光屏的中心在同一高度。

凸透鏡成像規律:

物距(u) 像距( υ ) 像的性質 應用

u > 2f f<υ<2f 倒立縮小實像 照相機

u = 2f υ= 2f 倒立等大實像 (實像大小轉折)

f< u<2f>2f 倒立放大實像 幻燈機

u = f 不成像 (像的虛實轉折點)

u < f υ> u 正立放大虛像 放大鏡

凸透鏡成像規律口決記憶法

口決一:"一焦(點)分虛實,二焦(距)分大小;虛像同側正;實像異側倒,物遠像變小"。

口決二:

物遠實像小而近,物近實像大而遠,

如果物放焦點內,正立放大虛像現;

幻燈放像像好大,物處一焦二焦間,

相機縮你小不點,物處二倍焦距遠。

口決三:

凸透鏡,本領大,照相、幻燈和放大;

二倍焦外倒實小,二倍焦內倒實大;

若是物放焦點內,像物同側虛像大;

一條規律記在心,物近像遠像變大。

注1:爲了使幕上的像"正立"(朝上),幻燈片要倒着插。

注2:照相機的鏡頭相當於一個凸透鏡,暗箱中的膠片相當於光屏,我們調節調焦環,並非調焦距,而是調鏡頭到膠片的距離,物離鏡頭越遠,膠片就應靠近鏡頭。

眼睛和眼鏡

眼睛:眼睛中晶狀體和角膜的共同作用相當於凸透鏡,它把來自物體的光會聚在視網膜上,形成物體的像。視網膜上的視神經細胞受到光的刺激,把信號傳輸給大腦。看遠處物體時,睫狀肌放鬆,晶狀體比較薄(焦距長,偏折弱)。看近處物體時,睫狀肌收縮,晶狀體比較厚(焦距短,偏折強)。

近視的表現:能看清近處的物體,看不清遠處的物體。

近視的原因:晶狀體太厚,折光能力太強,或眼球前後方向太長,致使遠處物體的像成在視網膜前。

近視的矯治:佩戴凹透鏡。

遠視的表現:能看清遠處的物體,看不清近處的物體。

遠視的原因:晶狀體太薄,折光能力太弱,或眼球前後方向太短,致使遠處物體的像成在視網膜後。

遠視的矯治:佩戴凸透鏡。

眼鏡的度數:100×焦距的倒數( )。

上面對眼睛和眼鏡知識的內容講解學習,同學們都能很好的掌握了吧,希望同學們認真學習物理知識,爭取做的更好。

照相機和投影儀

照相機:

1、鏡頭是凸透鏡;

2、物體到透鏡的距離(物距)大於二倍焦距,成的是倒立、縮小的實像;

投影儀:

1、投影儀的鏡頭是凸透鏡;

2、投影儀的平面鏡的作用是改變光的`傳播方向;

注意:照相機、投影儀要使像變大,應該讓透鏡靠近物體,遠離膠捲、屏幕。

3、物體到透鏡的距離(物距)小於二倍焦距,大於一倍焦距,成的是倒立、放大的實像;

以上對物理中照相機和投影儀知識的內容講解學習,同學們都能很好的掌握了吧,相信同學們會在考試中取得很好的成效的吧。

顯微鏡和望遠鏡

顯微鏡由目鏡和物鏡組成,物鏡、目鏡都是凸透鏡,它們使物體兩次放大;

望遠鏡由目鏡和物鏡組成,物鏡使物體成縮小、倒立的實像,目鏡相當於放大鏡,成放大的像;

物理知識點 篇10

證明大氣壓強存在實驗

馬德堡半球實驗:有力地證明了①大氣壓的存在②大氣壓很大。

托裏拆利實驗:在長約1m,一段封閉的玻璃管裏灌滿水銀,用手指將管口堵住,然後倒插在水銀槽中。放開手指,管內水銀下降到一定程度時就不再下降,這 時管內外水銀高度差約爲760mm,把玻璃管傾斜,則水銀柱的長度變長,但水銀柱的高度,即玻璃管內外水銀面的高度差不變。測量結果表明這個高度是由當時 的大氣壓的大小和水銀的密度所共同決定的,與玻璃管的粗細、形狀、長度(足夠長的玻璃管)無關。

標準大氣壓(standard atmospheric pressure):符號爲1atm(非法定單位),1atm*約爲1.013×10的5次方Pa。

測量壓強方法

液U形管壓強計體壓強的測量

液體壓強的測量的儀器叫U形管壓強計,利用液體壓強公式P=phg,h爲兩液麪的高度差,計算液麪差產生的壓強就等於液體內部壓強。

測定大氣壓的儀器是:氣壓計,常見金屬盒氣壓計測定大氣壓。飛機上使用的高度計實際上是用氣壓計改裝成的。1標準大氣壓=1.013×105帕=76cm水銀柱高。

物理知識點 篇11

定滑輪

①定義:中間的軸固定不動的滑輪。

②實質:定滑輪的實質是:等臂槓桿

③特點:使用定滑輪不能省力但是能改變動力的方向。

④對理想的定滑輪(不計輪軸間摩擦)F=G

繩子自由端移動距離S(F)(或速度v(F))=重物移動的距離S(G)(或速度V(G))

物理知識點 篇12

一、光在同種均勻介質中沿直線傳播;

1、光線:表示光傳播路線的直線;

2、光束:在真空中光的傳播速度c=3.0108m/s;

3、光的折射定律:光從一介質進入另一介質時,傳播路線要發生改變,入射光線和折射光線分居法線的兩側;從光密質進入光疏質時,入射角小於折射角;

(1)入射角:圖射光線和法線間的加角;(2)折射角:折射光線和法線間的夾角;

(2)折射率n=c/v=sini/sinr(大的除以小的);

4、光密質:折射率大的介質;

5、光疏質:折射率較大的介質;

二、全反射:光從光密質進入光疏質時,當入射角大於零界角時,只有反射光線沒有折射光線的現象;

1、發生全反射的條件:(1)光從光密質進入光疏質;(2)入射角大於臨界角;

2、臨界角:當折射角等於90時的入射角;sinaC=1/n;

3、特例:海市蜃樓、光導纖維;

三、光的色散:當白光經過三棱鏡後能形成彩色個光帶,這個現象叫色散;

1、發生色散後在光屏上從上至下,依次是紅、橙、黃、綠、藍、靛、紫;

2、從紅到紫光的頻率由小到大;波長由大到小;

3、在同種介質中,折射率由小到大;傳播速度由大到小;

4、從紅光到紫光衍射現象逐漸減弱;

物理知識點 篇13

電流知識大放送:電壓在國際單位制中的主單位是伏特(V),簡稱伏,用符號V表示。

電壓

單位

1]1伏特等於對每1庫侖的電荷做了1焦耳的功,即1 V = 1 J/C。強電壓常用千伏(KV)爲單位,弱小電壓的單位可以用毫伏(mV)微伏(μv)。

它們之間的換算關係是:

1kV=1000V=10^3V

1V=1000mV=10^3mV

1mV=1000μv=10^3μv

電路中的電壓

電壓是推動電荷定向移動形成電流的原因。電流之所以能夠在導線中流動,也是因爲在電流中有着高電勢和低電勢之間的差別。這種差別叫電勢差,也叫電壓。換句話說。在電路中,任意兩點之間的電位差稱爲這兩點的電壓。通常用字母U代表電壓。

電源是給用電器兩端提供電壓的裝置。電壓的大小可以用電壓表(符號:V)測量。

串聯電路電壓規律:串聯電路兩端總電壓等於各部分電路兩端電壓和。

公式:ΣU=U1+U2

並聯電路電壓規律:並聯電路各支路兩端電壓相等,且等於電源電壓。

公式:ΣU=U1=U2

歐姆定律:U=IR(I爲電流,R是電阻)但是這個公式只適用於純電阻電路

溫馨提示:交流電壓的瞬時值要用小寫字母u或u(t)表示。在電路中提供電壓的裝置是電源。

物理知識點 篇14

一、電磁感應現象:

1、只要穿過閉合迴路中的磁通量發生變化,閉合迴路中就會產生感應電流,如果電路不閉合只會產生感應電動勢。

這種利用磁場產生電流的現象叫電磁感應,是1831年法拉第發現的。

迴路中產生感應電動勢和感應電流的條件是迴路所圍面積中的磁通量變化,因此研究磁通量的變化是關鍵,由磁通量的廣義公式中(是B與S的夾角)看,磁通量的變化可由面積的變化引起;可由磁感應強度B的變化引起;可由B與S的夾角的變化引起;也可由B、S、中的兩個量的變化,或三個量的同時變化引起。

下列各圖中,迴路中的磁通量是怎麼的變化,我們把迴路中磁場方向定爲磁通量方向(只是爲了敘述方便),則各圖中磁通量在原方向是增強還是減弱。

(1)圖:由彈簧或導線組成迴路,在勻強磁場B中,先把它撐開,而後放手,到恢復原狀的過程中。

(2)圖:裸銅線在裸金屬導軌上向右勻速運動過程中。

(3)圖:條形磁鐵插入線圈的過程中。

(4)圖:閉合線框遠離與它在同一平面內通電直導線的過程中。

(5)圖:同一平面內的兩個金屬環A、B,B中通入電流,電流強度I在逐漸減小的過程中。

(6)圖:同一平面內的A、B迴路,在接通K的瞬時。

(7)圖:同一鐵芯上兩個線圈,在滑動變阻器的滑鍵P向右滑動過程中。

(8)圖:水平放置的條形磁鐵旁有一閉合的水平放置線框從上向下落的過程中。

2、閉合迴路中的一部分導體在磁場中作切割磁感線運動時,可以產生感應電動勢,感應電流,這是國中學過的,其本質也是閉合迴路中磁通量發生變化。

3、產生感應電動勢、感應電流的條件:導體在磁場裏做切割磁感線運動時,導體內就產生感應電動勢;穿過線圈的磁量發生變化時,線圈裏就產生感應電動勢。如果導體是閉合電路的一部分,或者線圈是閉合的,就產生感應電流。從本質上講,上述兩種說法是一致的,所以產生感應電流的條件可歸結爲:穿過閉合電路的磁通量發生變化。

二、楞次定律:

1、1834年德國物理學家楞次通過實驗總結出:感應電流的方向總是要使感應電流的磁場阻礙引起感應電流的磁通量的變化。

即磁通量變化感應電流感應電流磁場磁通量變化。

2、當閉合電路中的磁通量發生變化引起感應電流時,用楞次定律判斷感應電流的方向。

楞次定律的內容:感應電流的磁場總是阻礙引起感應電流爲磁通量變化。

楞次定律是判斷感應電動勢方向的定律,但它是通過感應電流方向來表述的。按照這個定律,感應電流只能採取這樣一個方向,在這個方向下的感應電流所產生的磁場一定是阻礙引起這個感應電流的那個變化的磁通量的變化。我們把“引起感應電流的那個變化的磁通量”叫做“原磁道”。因此楞次定律可以簡單表達爲:感應電流的磁場總是阻礙原磁通的變化。所謂阻礙原磁通的變化是指:當原磁通增加時,感應電流的磁場(或磁通)與原磁通方向相反,阻礙它的增加;當原磁通減少時,感應電流的磁場與原磁通方向相同,阻礙它的減少。從這裏可以看出,正確理解感應電流的磁場和原磁通的關係是理解楞次定律的關鍵。要注意理解“阻礙”和“變化”這四個字,不能把“阻礙”理解爲“阻止”,原磁通如果增加,感應電流的磁場只能阻礙它的增加,而不能阻止它的增加,而原磁通還是要增加的。更不能感應電流的“磁場”阻礙“原磁通”,尤其不能把阻礙理解爲感應電流的磁場和原磁道方向相反。正確的理解應該是:通過感應電流的磁場方向和原磁通的方向的相同或相反,來達到“阻礙”原磁通的“變化”即減或增。楞次定律所反映提這樣一個物理過程:原磁通變化時(原變),產生感應電流(I感),這是屬於電磁感應的條件問題;感應電流一經產生就在其周圍空間激發磁場(感),這就是電流的磁效應問題;而且I感的方向就決定了感的方向(用安培右手螺旋定則判定);感阻礙原的變化--這正是楞次定律所解決的問題。這樣一個複雜的過程,可以用圖表理順如下:

楞次定律也可以理解爲:感應電流的效果總是要反抗(或阻礙)產生感應電流的原因,即只要有某種可能的過程使磁通量的變化受到阻礙,閉合電路就會努力實現這種過程:

(1)阻礙原磁通的變化(原始錶速);

(2)阻礙相對運動,可理解爲“來拒去留”,具體表現爲:若產生感應電流的迴路或其某些部分可以自由運動,則它會以它的運動來阻礙穿過路的磁通的變化;若引起原磁通變化爲磁體與產生感應電流的可動迴路發生相對運動,而回路的面積又不可變,則迴路得以它的運動來阻礙磁體與迴路的相對運動,而回路將發生與磁體同方向的運動;

(3)使線圈面積有擴大或縮小的趨勢;

(4)阻礙原電流的變化(自感現象)。

利用上述規律分析問題可獨闢蹊徑,達到快速準確的效果。如圖1所示,在O點懸掛一輕質導線環,拿一條形磁鐵沿導線環的軸線方向突然向環內插入,判斷在插入過程中導環如何運動。若按常規方法,應先由楞次定律 判斷出環內感應電流的方向,再由安培定則確定環形電流對應的磁極,由磁極的相互作用確定導線環的運動方向。若直接從感應電流的效果來分析:條形磁鐵向環內插入過程中,環內磁通量增加,環內感應電流的效果將阻礙磁通量的增加,由磁通量減小的方向運動。因此環將向右擺動。顯然,用第二種方法判斷更簡捷。

應用楞次定律判斷感應電流方向的具體步驟:

(1)查明原磁場的方向及磁通量的變化情況;

(2)根據楞次定律中的“阻礙”確定感應電流產生的磁場方向;

(3)由感應電流產生的磁場方向用安培表判斷出感應電流的方向。

3、當閉合電路中的一部分導體做切割磁感線運動時,用右手定則可判定感應電流的方向。

運動切割產生感應電流是磁通量發生變化引起感應電流的特例,所以判定電流方向的右手定則也是楞次定律的特例。用右手定則能判定的,一定也能用楞次定律判定,只是不少情況下,不如用右手定則判定的方便簡單。反過來,用楞次定律能判定的,並不是用右手定則都能判定出來。如圖2所示,閉合圖形導線中的磁場逐漸增強,因爲看不到切割,用右手定則就難以判定感應電流的方向,而用楞次定律就很容易判定。

要注意左手定則與右手定則應用的區別,兩個定則的應用可簡單總結爲:“因電而動”用右手,“因動而電”用右手,因果關係不可混淆。

物理知識點 篇15

根據物理學習的學科特點,在總結了相應的學習規律後,我們得到了幾個行之有效的學習方法,這些方法便於學生在總體上把握物理學習的脈絡,找到正確的思維方法,並可以有效地提高學生的綜合分析能力。特別是在會考衝刺階段,這些方法十分值得借鑑。

一、重視畫圖和識圖

學習物理離不開圖形,從運用力學知識的機械設計到運用電磁學知識的複雜電路設計,都主要是依靠“圖形語言”來表達的。知識的條理化,分析解決問題的思路等問題,用通常意義上的語言或文字都是有侷限性和低效率的。所以,按照科學的方法動手畫圖是學習物理的重要方法,而且對今後進一步學習現代科學技術有着重要意義。

在國中物理課程裏,同學們會學到力的圖示、簡單的機械圖、電路圖和光路圖。“大綱”要求的畫圖主要分爲兩個部分:一部分畫圖屬於作圖類型題,比方說,作光路圖、作力的圖示、作力臂圖以及畫電路圖等等;另一部分,根據現成的圖形學會識圖,所謂識圖是指主要結合條件看圖,不僅要學會把複雜的圖形看簡單(即分析圖形),更要學會在複雜的圖形中看出基本圖形。例如,在計算有關電路的習題時,已給出的電路圖往往很難分析出來是串聯、並聯或混聯,如果能熟練地將所給出的電路圖畫成等效電路圖,就會很容易地看出電路的連接特點,使有關問題迎刃而解。

二、重視觀察和實驗

物理是一門以觀察、實驗爲基礎的學科,觀察和實驗是物理學的重要方法。法拉第曾經說過:“沒有觀察,就沒有科學。科學發現誕生於仔細的觀察之中。”對於初學物理的國中學生,尤其要重視對現象的仔細觀察。因爲只有通過對現象的觀察,才能使我們對所學知識的理解不斷深化。例如,學習運用的相對性,老師講到參照物時,許多同學都會聯想到:坐在火車上的人,會觀察到鐵路兩旁的電杆、樹木都向車尾飛奔而去。這個生動的實例使我們對運動的相對性有了形象的認識。

在學習物理知識的過程中,我們還應該重視實驗,注意把所學的物理知識與日常生活、生產中的現象結合起來,其中也包括與物理實驗現象的結合,因爲大量的物理規律是在實驗的基礎上總結出來的。作爲一個剛剛開始物理學習的國中學生,要認真觀察老師的演示實驗並獨立完成學生的動手操作實驗。

在認真完成課內規定實驗的基礎上,還可以自己設計實驗,來判斷自己設計實驗方案在實踐中是否可行。例如,可以自己設計實驗測量學校綠地中一個彎曲小徑的長度;可以通過實驗測量上學途中騎車的平均速度;還可以設計在缺少電流表或缺少電壓表的條件下測量未知電阻的實驗。這些都需要同學們自己獨立思考、探索,不斷提高自己的觀察、判斷、思維等能力,使自己對物理知識的理解更深刻,分析、解決問題更全面。