物理水平考知識13篇

物理水平考知識1

1、電閃雷鳴是自然界常見的現象,古人認爲那是“天神之火”,是天神對罪惡的懲罰,直到1752年,偉大的科學家富蘭克林冒着生命危險在美國費城進行了的風箏實驗,把天電引了下來,發現天電和摩擦產生的電是一樣的,才使人類擺脫了對雷電現象的迷信。

物理水平考知識13篇

2、伏打於1800年春發明了能夠提供持續電流的“電堆”——最早的直流電源。他的發明爲科學家們由靜電轉入電流的研究創造了條件,揭開了電力應用的新篇章。

3、以美國發明家愛迪生和英國化學家斯旺爲代表的一批發明家,發明和改進了電燈,改變了人類日出而作、日沒而息的生活習慣。

4、 1820年,丹麥物理學家奧斯特用實驗展示了電與磁的聯繫,說明了電與磁之間存在着相互作用,這對電與磁研究的深入發展具有劃時代的意義,也預示了電力應用的可能性。

5、英國物理學家法拉第經過10年的艱苦探索,終於在1831年發現了電磁感應現象,進一步揭示了電現象與磁現象之間的密切聯繫,奏響了電氣化時代的序曲。

6、英國物理學家麥克斯韋建立完整的電磁場理論並預言電磁波的存在,他的理論,足以與牛頓力學理論相媲美,是物理學發展的一個里程碑式的貢獻。

7、德國物理學家赫茲用實驗證實了電磁波的存在,爲無線電技術的發展開拓了道路,被譽爲無線電通信的先驅。後人爲了紀念他,用他的名字命名了頻率的單位。

物理水平考知識2

勻變速直線運動的規律:

1、速度:勻變速直線運動中速度和時間的關係:vt=v0+at

注:一般我們以初速度的方向爲正方向,則物體作加速運動時,a取正值,物體作減速運動時,a取負值;

(1)作勻變速直線運動的物體中間時刻的瞬時速度等於初速度和末速度的平均;

(2)作勻變速運動的物體中間時刻的瞬時速度等於平均速度,等於初速度和末速度的平均;

2、位移:勻變速直線運動位移和時間的關係:s=v0t+1/2at

注意:當物體作加速運動時a取正值,當物體作減速運動時a取負值;

3、推論:2as=vt2-v02

4、作勻變速直線運動的物體在兩個連續相等時間間隔內位移之差等於定植;s2-s1=aT2

5、初速度爲零的勻加速直線運動:前1秒,前2秒,??位移和時間的關係是:位移之比等於時間的平方比;第1秒、第2秒??的位移與時間的關係是:位移之比等於奇數比。

物理水平考知識3

物體與質點

1、質點:當物體的大小和形狀對所研究的問題而言影響不大或沒有影響時,爲研究問題方便,可忽略其大小和形狀,把物體看做一個有質量的點,這個點叫做質點。

2、物體可以看成質點的條件

條件:①研究的物體上個點的運動情況完全一致。

②物體的線度必須遠遠的大於它通過的距離。

(1)物體的形狀大小以及物體上各部分運動的差異對所研究的問題的影響可以忽略不計時就可以把物體當作質點

(2)平動的物體可以視爲質點

平動的物體上各個點的運動情況都完全相同的物體,這樣,物體上任一點的運動情況與整個物體的運動情況相同,可用一個質點來代替整個物體。

小貼士:質點沒有大小和形狀因爲它僅僅是一個點,但是質點一定有質量,因爲它代表了一個物體,是一個實際物體的理想化的模型。質點的質量就是它所代表的物體的質量。

參考系

1、參考系的定義:描述物體的運動時,用來做參考的另外的物體。

2、對參考系的理解:

(1)物體是運動還是靜止,都是相對於參考系而言的,例如,肩並肩一起走的兩個人,彼此就是相對靜止的,而相對於路邊的建築物,他們卻是運動的。

(2)同一運動選擇不同的參考系,觀察結果可能不同。例如司機開着車行駛在高速公路上以車爲參考系,司機是靜止的,以路面爲參考系,司機是運動的。

(3)比較物體的運動,應該選擇同一參考系。

(4)參考系可以是運動的物體,也可以是靜止的物體。

小貼士:只有選擇了參考系,說某個物體是運動還是靜止,物體怎樣運動才變得有意義參考系的選擇是研究運動的前提是一項基本技能

座標系

1、座標系物理意義:在參考系上建立適當的座標系,從而,定量地描述物體的位置及位置變化。

2、座標系分類:

(1)一維座標系(直線座標系):適用於描述質點做直線運動,研究沿一條直線運動的物體時,要沿着運動直線建立直線座標系,即以物體運動所沿的直線爲x軸,在直線上規定原點、正方向和單位長度。例如,汽車在平直公路上行駛,其位置可用離車站(座標原點)的距離(座標)來確定。

(2)二維座標系(平面直角座標系)適用於質點在平面內做曲線運動。例如,運動員推鉛球以鉛球離手時的位置爲座標原點,沿鉛球初速方向建立x軸,豎直向下建立y軸,鉛球的座標爲鉛球離開手後的水平距離和豎直距離。

(3)三維座標系(空間直角座標系):適用於物體在三維空間的運動。例如,籃球在空中的運動。

物理水平考知識4

一、電磁波的發現

1、電磁場理論的核心之一:變化的磁場產生電場

在變化的磁場中所產生的電場的電場線是閉合的(渦旋電場)◎理解:(1)均勻變化的磁場產生穩定電場

(2)非均勻變化的磁場產生變化電場

2、電磁場理論的核心之二:變化的電場產生磁場

麥克斯韋假設:變化的電場就像導線中的電流一樣,會在空間產生磁場,即變化的電場產生磁場

◎理解:(1)均勻變化的電場產生穩定磁場

(2)非均勻變化的電場產生變化磁場

3、麥克斯韋電磁場理論的理解:

恆定的電場不產生磁場

恆定的磁場不產生電場

均勻變化的電場在周圍空間產生恆定的磁場

均勻變化的磁場在周圍空間產生恆定的電場

振盪電場產生同頻率的振盪磁場

振盪磁場產生同頻率的振盪電場

4、電磁場:如果在空間某區域中有周期性變化的電場,那麼這個變化的電場就在它周圍空間產生週期性變化的磁場;這個變化的磁場又在它周圍空間產生新的週期性變化的電場,變化的電場和變化的磁場是相互聯繫着的,形成不可分割的統一體,這就是電磁場

5、電磁波:電磁場由發生區域向遠處的傳播就是電磁波。

6、電磁波的特點:

(1)電磁波是橫波,電場強度E和磁感應強度B按正弦規律變化,二者相互垂直,均與波的傳播方向垂直

(2)電磁波可以在真空中傳播,速度和光速相同。v=λf

(3)電磁波具有波的特性

7、赫茲的電火花:赫茲觀察到了電磁波的反射,折射,干涉,偏振和衍射等現象。他還測量出電磁波和光有相同的速度。這樣赫茲證實了麥克斯韋關於光的電磁理論,赫茲在人類歷首先捕捉到了電磁波。

物理水平考知識5

直線運動

一、機械運動:一物體相對其它物體的位置變化,叫機械運動;

1、參考系:爲研究物體運動假定不動的物體;又名參照物(參照物不一定靜止);

2、質點:只考慮物體的質量、不考慮其大小、形狀的物體;

(1)質點是一理想化模型;

(2)把物體視爲質點的條件:物體的形狀、大小相對所研究對象小的可忽略不計時;

如:研究地球繞太陽運動,火車從北京到上海;

3、時刻、時間間隔:在表示時間的數軸上,時刻是一點、時間間隔是一線段;

如:5點正、9點、7點30是時刻,45分鐘、3小時是時間間隔;

4、位移:從起點到終點的有相線段,位移是矢量,用有相線段表示;路程:描述質點運動軌跡的曲線;

(1)位移爲零、路程不一定爲零;路程爲零,位移一定爲零;

(2)只有當質點作單向直線運動時,質點的位移纔等於路程;

(3)位移的國際單位是米,用m表示

5、位移時間圖象:建立一直角座標系,橫軸表示時間,縱軸表示位移;

(1)勻速直線運動的位移圖像是一條與橫軸平行的直線;

(2)勻變速直線運動的位移圖像是一條傾斜直線;

(3)位移圖像與橫軸夾角的正切值表示速度;夾角越大,速度越大;

6、速度是表示質點運動快慢的物理量;

(1)物體在某一瞬間的速度較瞬時速度;物體在某一段時間的速度叫平均速度;

(2)速率只表示速度的大小,是標量;

7、加速度:是描述物體速度變化快慢的物理量;

(1)加速度的定義式:a=vt-v0/t

(2)加速度的大小與物體速度大小無關;

(3)速度大加速度不一定大;速度爲零加速度不一定爲零;加速度爲零速度不一定爲零;

(4)速度改變等於末速減初速。加速度等於速度改變與所用時間的比值(速度的變化率)加速度大小與速度改變量的大小無關;

(5)加速度是矢量,加速度的方向和速度變化方向相同;

(6)加速度的國際單位是m/s2

物理水平考知識6

恆定電流

1、電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}

2、歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}

3、電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}

4、閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外

{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}

5、電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}

6、焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}

7、純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8、電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}

9、電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)

電阻關係(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+

電流關係 I總=I1=I2=I3 I並=I1+I2+I3+

電壓關係 U總=U1+U2+U3+ U總=U1=U2=U3

功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+

10、歐姆表測電阻

(1)電路組成 (2)測量原理

兩表筆短接後,調節Ro使電錶指針滿偏,得Ig=E/(r+Rg+Ro)

接入被測電阻Rx後通過電錶的電流爲Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx),由於Ix與Rx對應,因此可指示被測電阻大小。

(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。

(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。

11、伏安法測電阻

電流表內接法: 電流表外接法:

電壓表示數:U=UR+UA 電流表示數:I=IR+IV

Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

選用電路條件Rx>>RA [或Rx>(RARV)1/2] 選用電路條件Rx<

12、滑動變阻器在電路中的限流接法與分壓接法

電壓調節範圍小,電路簡單,功耗小 電壓調節範圍大,電路複雜,功耗較大

便於調節電壓的選擇條件Rp>Rx 便於調節電壓的選擇條件Rp

物理水平考知識7

電場

1、兩種電荷、電荷守恆定律、元電荷:(e=1。60×10—19C);帶電體電荷量等於元電荷的整數倍。

2、庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9。0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}

3、電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}

4、真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}

5、勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}

6、電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}

7、電勢與電勢差:UAB=φA—φB,UAB=WAB/q=—ΔEAB/q

8、電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}

9、電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}

10、電勢能的變化ΔEAB=EB—EA {帶電體在電場中從A位置到B位置時電勢能的差值}

11、電場力做功與電勢能變化ΔEAB=—WAB=—qUAB(電勢能的增量等於電場力做功的負值)

12、電容C=Q/U(定義式,計算式){C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}

13、平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的`垂直距離,ω:介電常數)

14、帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15、帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)

類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)

拋運動平行電場方向:初速度爲零的勻加速直線運動d=at2/2,a=F/m=qE/m

注:

(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分。

(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向爲場強方向,電場線密處場強大,順着電場線電勢越來越低,電場線與等勢線垂直。

(3)常見電場的電場線分佈要求熟記。

(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關。

(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強爲零,導體內部沒有淨電荷,淨電荷只分佈於導體外表面。

(6)電容單位換算:1F=106μF=1012PF。

(7)電子伏(eV)是能量的單位,1eV=1。60×10—19J。

(8)其它