cpu的工作原理

CPU從存儲器或高速緩衝存儲器中取出指令,放入指令寄存器,並對指令譯碼。它把指令分解成一系列的微操作,然後發出各種控制命令,執行微操作系列,從而完成一條指令的執行。下面是YJBYS小編整理的cpu的工作原理相關知識,希望對你有幫助!

cpu的工作原理

  提取

第一階段,提取,從存儲器或高速緩衝存儲器中檢索指令(爲數值或一系列數值)。由程序計數器(Program Counter)指定存儲器的位置,程序計數器保存供識別目前程序位置的數值。換言之,程序計數器記錄了CPU在目前程序裏的蹤跡。提取指令之後,程序計數器根據指令長度增加存儲器單元。指令的提取必須常常從相對較慢的存儲器尋找,因此導致CPU等候指令的送入。這個問題主要被論及在現代處理器的快取和管線化架構。

  解碼

CPU根據存儲器提取到的指令來決定其執行行爲。在解碼階段,指令被拆解爲有意義的片斷。根據CPU的指令集架構(ISA)定義將數值解譯爲指令。一部分的指令數值爲運算碼(Opcode),其指示要進行哪些運算。其它的數值通常供給指令必要的信息,諸如一個加法(Addition)運算的運算目標。這樣的'運算目標也許提供一個常數值(即立即值),或是一個空間的定址值:暫存器或存儲器位址,以定址模式決定。在舊的設計中,CPU裏的指令解碼部分是無法改變的硬件設備。不過在衆多抽象且複雜的CPU和指令集架構中,一個微程序時常用來幫助轉換指令爲各種形態的訊號。這些微程序在已成品的CPU中往往可以重寫,方便變更解碼指令。

  執行

在提取和解碼階段之後,接着進入執行階段。該階段中,連接到各種能夠進行所需運算的CPU部件。例如,要求一個加法運算,算數邏輯單元(ALU,Arithmetic Logic Unit)將會連接到一組輸入和一組輸出。輸入提供了要相加的數值,而輸出將含有總和的結果。ALU內含電路系統,易於輸出端完成簡單的普通運算和邏輯運算(比如加法和位元運算)。如果加法運算產生一個對該CPU處理而言過大的結果,在標誌暫存器裏,運算溢出(Arithmetic Overflow)標誌可能會被設置。

  寫回

最終階段,寫回,以一定格式將執行階段的結果簡單的寫回。運算結果經常被寫進CPU內部的暫存器,以供隨後指令快速存取。在其它案例中,運算結果可能寫進速度較慢,但容量較大且較便宜的主記憶體中。某些類型的指令會操作程序計數器,而不直接產生結果。這些一般稱作ldquo;跳轉(Jumps),並在程式中帶來循環行爲、條件性執行(透過條件跳轉)和函式。許多指令也會改變標誌暫存器的狀態位元。

這些標誌可用來影響程式行爲,緣由於它們時常顯出各種運算結果。例如,以一個比較指令判斷兩個值的大小,根據比較結果在標誌暫存器上設置一個數值。這個標誌可藉由隨後的跳轉指令來決定程式動向。在執行指令並寫回結果之後,程序計數器的值會遞增,反覆整個過程,下一個指令週期正常的提取下一個順序指令。如果完成的是跳轉指令,程序計數器將會修改成跳轉到的指令位址,且程序繼續正常執行。許多複雜的CPU可以一次提取多個指令、解碼,並且同時執行。這個部分一般涉及經典RISC管線,那些實際上是在衆多使用簡單CPU的電子裝置中快速普及(常稱爲微控制(Microcontrollers))。