高三物理知識點梳理(12篇)

在我們上學期間,大家對知識點應該都不陌生吧?知識點就是一些常考的內容,或者考試經常出題的地方。還在爲沒有系統的知識點而發愁嗎?下面是小編爲大家收集的高三物理知識點梳理,歡迎大家借鑑與參考,希望對大家有所幫助。

高三物理知識點梳理(12篇)

高三物理知識點梳理1

一、聲波的多普勒效應

在日常生活中,我們都會有這種經驗:

當一列鳴着汽笛的火車經過某觀察者時,他會發現火車汽笛的聲調由高變低.爲什麼會發生這種現象呢?這是因爲聲調的高低是由聲波振動頻率的不同決定的,如果頻率高,聲調聽起來就高;反之聲調聽起來就低.這種現象稱爲多普勒效應,它是用發現者克里斯蒂安多普勒(ChristianDoppler,1803-1853)的名字命名的,多普勒是奧地利物理學家和物理家.他於1842年首先發現了這種效應.爲了理解這一現象,就需要考察火車以恆定速度駛近時,汽笛發出的聲波在傳播時的規律.其結果是聲波的波長縮短,好象波被壓縮了.因此,在一定時間間隔內傳播的波數就增加了,這就是觀察者爲什麼會感受到聲調變高的原因;相反,當火車駛向遠方時,聲波的波長變大,好象波被拉伸了.因此,聲音聽起來就顯得低沉.定量分析得到f1=(u+v0)/(u-vs)f,其中vs爲波源相對於介質的速度,v0爲觀察者相對於介質的速度,f表示波源的固有頻率,u表示波在靜止介質中的傳播速度.當觀察者朝波源運動時,v0取正號;當觀察者背離波源(即順着波源)運動時,v0取負號.當波源朝觀察者運動時vs前面取負號;前波源背離觀察者運動時vs取正號.從上式易知,當觀察者與聲源相互靠近時,f1當觀察者與聲源相互遠離時。

二、光波的多普勒效應

具有波動性的光也會出現這種效應,它又被稱爲多普勒-斐索效應.因爲法國物理學家斐索(1819-1896)於1848年獨立地對來自恆星的波長偏移做了解釋,指出了利用這種效應測量恆星相對速度的辦法.光波與聲波的不同之處在於,光波頻率的變化使人感覺到是顏色的變化.如果恆星遠離我們而去,則光的譜線就向紅光方向移動,稱爲紅移;如果恆星朝向我們運動,光的譜線就向紫光方向移動,稱爲藍移.

三、光的多普勒效應的應用

20世紀20年代,美國天文學家斯萊弗在研究遠處的旋渦星雲發出的光譜時,首先發現了光譜的紅移,認識到了旋渦星雲正快速遠離地球而去.1929年哈勃根據光普紅移總結出的哈勃定律:星系的遠離速度v與距地球的距離r成正比,即v=Hr,H爲哈勃常數.根據哈勃定律和後來更多天體紅移的測定,人們相信宇宙在長時間內一直在膨脹,物質密度一直在變小.由此推知,宇宙結構在某一時刻前是不存在的,它只能是演化的產物.因而1948年伽莫夫(w)和他的同事們提出大爆炸宇宙模型.20世紀60年代以來,大爆炸宇宙模型逐漸被廣泛接受,以致被天文學家稱爲宇宙的標準模型.

多普勒-斐索效應使人們對距地球任意遠的天體的運動的研究成爲可能,這隻要分析一下接收到的光的頻譜就行了.1868年,英國天文學家W.哈金斯用這種辦法測量了天狼星的視向速度(即物體遠離我們而去的速度),得出了46km/s的速度值。

高三物理知識點梳理2

光子說

⑴量子論:1900年德國物理學家普朗克提出:電磁波的發射和吸收是不連續的,而是一份一份的,每一份電磁波的能量。

⑵光子論:1905年愛因斯坦提出:空間傳播的光也是不連續的,而是一份一份的,每一份稱爲一個光子,光子具有的能量與光的頻率成正比。

光的波粒二象性

光既表現出波動性,又表現出粒子性。大量光子表現出的波動性強,少量光子表現出的粒子性強;頻率高的光子表現出的粒子性強,頻率低的光子表現出的波動性強。

實物粒子也具有波動性,這種波稱爲德布羅意波,也叫物質波。滿足下列關係:

從光子的概念上看,光波是一種概率波.

電子的發現和湯姆生的原子模型:

⑴電子的發現:

1897年英國物理學家湯姆生,對陰極射線進行了一系列研究,從而發現了電子。

電子的發現表明:原子存在精細結構,從而打破了原子不可再分的觀念。

⑵湯姆生的原子模型:

1903年湯姆生設想原子是一個帶電小球,它的正電荷均勻分佈在整個球體內,而帶負電的電子鑲嵌在正電荷中。

氫原子光譜

氫原子是最簡單的原子,其光譜也最簡單。

1885年,巴耳末對當時已知的,在可見光區的14條譜線作了分析,發現這些譜線的波長可以用一個公式表示:

式中R叫做裏德伯常量,這個公式成爲巴爾末公式。

除了巴耳末系,後來發現的氫光譜在紅外和紫個光區的其它譜線也都滿足與巴耳末公式類似的關係式。

氫原子光譜是線狀譜,具有分立特徵,用經典的電磁理論無法解釋。

高三物理知識點梳理3

1.牛頓第一定律(慣性定律):一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種做狀態爲止。

a.只有當物體所受合外力爲零時,物體才能處於靜止或勻速直線運動狀態。

b.力是該變物體速度的原因。

c.力是改變物體運動狀態的原因(物體的速度不變,其運動狀態就不變)

d力是產生加速度的原因。

2.慣性:物體保持勻速直線運動或靜止狀態的性質叫慣性。

a.一切物體都有慣性。

b.慣性的大小由物體的質量決定。

c.慣性是描述物體運動狀態改變難易的物理量。

3.牛頓第二定律:物體的加速度跟所受的合外力成正比,跟物體的質量成反比,加速度的方向跟物體所受合外力的方向相同。

a.數學表達式:a=F合/m。

b.加速度隨力的產生而產生、變化而變化、消失而消失。

c.當物體所受力的方向和運動方向一致時,物體加速。當物體所受力的方向和運動方向相反時,物體減速。

d.力的單位牛頓的定義:使質量爲1kg的物體產生1m/s2加速度的力,叫1N。

4.牛頓第三定律:物體間的作用力和反作用總是等大、反向、作用在同一條直線上的。

a.作用力和反作用力同時產生、同時變化、同時消失。

b.作用力和反作用力與平衡力的根本區別是作用力和反作用力作用在兩個相互作用的物體上,平衡力作用在同一物體上。

高三物理知識點梳理4

1、受力分析,往往漏“力”百出

對物體受力分析,是物理學中最重要、最基本的知識,分析方法有“整體法”與“隔離法”兩種。

對物體的受力分析可以說貫穿着整個高中物理始終,如力學中的重力、彈力(推、拉、提、壓)與摩擦力(靜摩擦力與滑動摩擦力),電場中的電場力(庫侖力)、磁場中的洛倫茲力(安培力)等。

在受力分析中,最難的是受力方向的判別,最容易錯的是受力分析往往漏掉某一個力。在受力分析過程中,特別是在“力、電、磁”綜合問題中,第一步就是受力分析,雖然解題思路正確,但考生往往就是因爲分析漏掉一個力(甚至重力),就少了一個力做功,從而得出的答案與正確結果大相徑庭,痛失整題分數。

還要說明的是在分析某個力發生變化時,運用的方法是數學計算法、動態矢量三角形法(注意只有滿足一個力大小方向都不變、第二個力的大小可變而方向不變、第三個力大小方向都改變的情形)和極限法(注意要滿足力的單調變化情形)。

2、對摩擦力認識模糊

摩擦力包括靜摩擦力,因爲它具有“隱敝性”、“不定性”特點和“相對運動或相對趨勢”知識的介入而成爲所有力中最難認識、最難把握的一個力,任何一個題目一旦有了摩擦力,其難度與複雜程度將會隨之加大。

最典型的就是“傳送帶問題”,這問題可以將摩擦力各種可能情況全部包括進去,建議高三黨們從下面四個方面好好認識摩擦力:

(1)物體所受的滑動摩擦力永遠與其相對運動方向相反。這裏難就難在相對運動的認識;說明一下,滑動摩擦力的大小略小於靜摩擦力,但往往在計算時又等於靜摩擦力。還有,計算滑動摩擦力時,那個正壓力不一定等於重力。

(2)物體所受的靜摩擦力永遠與物體的相對運動趨勢相反。顯然,最難認識的就是“相對運動趨勢方”的判斷。可以利用假設法判斷,即:假如沒有摩擦,那麼物體將向哪運動,這個假設下的運動方向就是相對運動趨勢方向;還得說明一下,靜摩擦力大小是可變的,可以通過物體平衡條件來求解。

(3)摩擦力總是成對出現的。但它們做功卻不一定成對出現。其中一個的誤區是,摩擦力就是阻力,摩擦力做功總是負的。無論是靜摩擦力還是滑動摩擦力,都可能是動力。

(4)關於一對同時出現的摩擦力在做功問題上要特別注意以下情況:

可能兩個都不做功。(靜摩擦力情形)

可能兩個都做負功。(如子彈打擊迎面過來的木塊)

可能一個做正功一個做負功但其做功的數值不一定相等,兩功之和可能等於零(靜摩擦可不做功)、

可能小於零(滑動摩擦)

也可能大於零(靜摩擦成爲動力)。

可能一個做負功一個不做功。(如,子彈打固定的木塊)

可能一個做正功一個不做功。(如傳送帶帶動物體情形)

(建議結合討論“一對相互作用力的做功”情形)

3、對彈簧中的彈力要有一個清醒的認識

彈簧或彈性繩,由於會發生形變,就會出現其彈力隨之發生有規律的變化,但要注意的是,這種形變不能發生突變(細繩或支持面的作用力可以突變),所以在利用牛頓定律求解物體瞬間加速度時要特別注意。

還有,在彈性勢能與其他機械能轉化時嚴格遵守能量守恆定律以及物體落到豎直的彈簧上時,其動態過程的分析,即有速度的情形。

高三物理知識點梳理5

1.水的密度:ρ水=1.0×103kg/m3=1g/cm3

2.1m3水的質量是1t,1cm3水的質量是1g。

3.利用天平測量質量時應"左物右碼"。

4.同種物質的密度還和狀態有關(水和冰同種物質,狀態不同,密度不同)。

5.增大壓強的方法:

①增大壓力

②減小受力面積

6.液體的密度越大,深度越深液體內部壓強越大。

7.連通器兩側液麪相平的條件:

①同一液體

②液體靜止

8.利用連通器原理:(船閘、茶壺、回水管、水位計、自動飲水器、過水涵洞等)。

9.大氣壓現象:(用吸管吸汽水、覆杯試驗、鋼筆吸水、抽水機等)。

10.馬德保半球試驗證明了大氣壓強的存在,托裏拆利試驗證明了大氣壓強的值。

11.浮力產生的原因:液體對物體向上和向下壓力的合力。

12.物體在液體中的三種狀態:漂浮、懸浮、沉底。

13.物體在漂浮和懸浮狀態下:浮力=重力

14.物體在懸浮和沉底狀態下:V排=V物

15.阿基米德原理F浮=G排也適用於氣體(浮力的計算公式:F浮=ρ氣gV排也適用於氣體)

高三物理知識點梳理6

一、功的定義

是力沿力的方向上的位移。功是與每一個力相對應的,每一個施加於物體上的力都有對物體做功的可能,功代表一種力的作用效果,最終物體所承受的功應是各力做功的和。由於功等於力和位移兩個矢量相乘,根據向量四則運算規則,功是標量,各力所做的功實際上都排在與位移的平行線上,有正有負,按數軸疊加得出總功,即合外力對物體所做的功。

二、功的單向性

不同於力的成對出現,功是不對稱的。

三、力與位移的夾角

物體實際受力方向經常與位移方向構成一個夾角θ,無論是力線向位移線轉還是位移線向力線轉都是旋轉θ角,之間的關係都是cosθ,當θ=0,cosθ=+1,力對物體做正功。當θ=π,cosθ=-1,力對物體做負功。當θ=π/2時,cosθ=0,力對物體不做功。但合外力必然與位移方向相同。

四、兩種機械能,動能和勢能,它們的概念

五、能量研究的體系的概念

能量是在體系內進行研究的,只有在一個特定完整的體系中才能應用機械能守恆定理,既然是體系,可以是兩個以上的物體。

六、能量研究的適用範圍

優勢是可以解決一些變力情況,缺點是不能解決有關加速度的研究。

七、搞清功和能的關係。確定什麼時候用機械能守恆,什麼時候用動能定理。

1功和能的關係

能量的轉換通過做功來實現,換句話說,做功產生能量(做正功),或做功損失能量(做負功),功有三種含義:一是等於物體單一能量的改變,如動能增加或減少。二是可以看作不同能量轉換的傳遞中介物,如增加或減少的動能通過做功可以轉化爲勢能,從而實現機械能守恆。三是可以表示出機械能以外的能量,從而可以傳遞給電能、熱能、光能等。

2動能定理

應該這樣描述:合外力對物體所做的功等於該物體動能的變化。這裏有以下兩個關鍵問題:

A必須是合外力做功,即所有力對物體做功的總和,也只有用合外力,動能定理才能成立。單個力可以對物體做功,但無法計算其貢獻的動能。由於合外力與位移方向永遠相同,所以沒有cosθ。

B因爲功是以研究對象爲範圍,與前面相同,即只針對一個物體,當兩個質量分別爲m1、m2的物體疊加時,需要像前面一樣根據需要進行整體和隔離,必須分開討論。

3機械能守恆定律

機械能守恆應該這樣描述,體系內各物體運動前總機械能等於運動後總機械能。機械能等於動能加勢能。這裏同樣有兩個關鍵問題,

A能量的研究範圍是體系,既然稱爲體系,應包括所有參與的物體(包括地球),以及整個的變化過程。既然所有物體都參與研究,因爲能量是標量,多個物體的能量就可以進行累加,形成系統內總動能和總勢能,進而形成總機械能。

B這裏不採用動能和勢能轉化的公式描述是因爲它只適用於一個物體,沒有充分發揮體系的優勢,由於動能定理解決多個物體問題比較複雜,因此這個問題顯得比較重要。

高三物理知識點梳理7

[感應電動勢的大小計算公式]

1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}

2)E=BLV垂(切割磁感線運動){L:有效長度(m)}

3)Em=nBSω(交流發電機的感應電動勢){Em:感應電動勢峯值}

4)E=BL2ω/2(導體一端固定以ω旋轉切割){ω:角速度(rad/s),V:速度(m/s)}

2.磁通量Φ=BS{Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}

3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}

4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感係數(H)(線圈L有鐵芯比無鐵芯時要大),

ΔI:變化電流,t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}

注:

1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點〔見第二冊P173〕

2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。

4)其它