大學聯考文科數學知識點總結

在平時的學習中,大家都沒少背知識點吧?知識點就是掌握某個問題/知識的學習要點。爲了幫助大家掌握重要知識點,下面是小編幫大家整理的大學聯考文科數學知識點總結,僅供參考,大家一起來看看吧。

大學聯考文科數學知識點總結

大學聯考文科數學知識點總結1

導數

一、綜述

導數是微積分的初步知識,是研究函數,解決實際問題的有力工具。在高中階段對於導數的學習,主要是以下幾個方面:

1.導數的常規問題:

(1)刻畫函數(比初等方法精確細微);(2)同幾何中切線聯繫(導數方法可用於研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於次多項式的導數問題屬於較難類型。

2.關於函數特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是大學聯考會考察綜合能力的一個方向,應引起注意。

二、知識整合

1.導數概念的理解。

2.利用導數判別可導函數的極值的方法及求一些實際問題的值與最小值。

複合函數的求導法則是微積分中的重點與難點內容。課本中先通過實例,引出複合函數的求導法則,接下來對法則進行了證明

3.要能正確求導,必須做到以下兩點:

(1)熟練掌握各基本初等函數的求導公式以及和、差、積、商的求導法則,複合函數的求導法則。

(2)對於一個複合函數,一定要理清中間的複合關係,弄清各分解函數中應對哪個變量求導。

不等式

不等式這部分知識,滲透在中學數學各個分支中,有着十分廣泛的應用。因此不等式應用問題體現了一定的綜合性、靈活多樣性,對數學各部分知識融會貫通,起到了很好的促進作用。在解決問題時,要依據題設與結論的結構特點、內在聯繫、選擇適當的解決方案,最終歸結爲不等式的求解或證明。不等式的應用範圍十分廣泛,它始終貫串在整個中學數學之中。諸如集合問題,方程(組)的解的討論,函數單調性的研究,函數定義域的確定,三角、數列、複數、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有着密切的聯繫,許多問題,最終都可歸結爲不等式的求解或證明。

知識整合

1.解不等式的核心問題是不等式的同解變形,不等式的性質則是不等式變形的理論依據,方程的根、函數的性質和圖象都與不等式的解法密切相關,要善於把它們有機地聯繫起來,互相轉化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較複雜的不等式化歸爲較簡單的或基本不等式,通過構造函數、數形結合,則可將不等式的解化歸爲直觀、形象的圖形關係,對含有參數的不等式,運用圖解法可以使得分類標準明晰。

2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質及函數的單調性,將分式不等式、絕對值不等式等化歸爲整式不等式(組)是解不等式的基本思想,分類、換元、數形結合是解不等式的常用方法。方程的根、函數的性質和圖象都與不等式的解密切相關,要善於把它們有機地聯繫起來,相互轉化和相互變用。

3.在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較複雜的不等式化歸爲較簡單的或基本不等式,通過構造函數,將不等式的解化歸爲直觀、形象的圖象關係,對含有參數的不等式,運用圖解法,可以使分類標準更加明晰。

4.證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據題設、題斷的結構特點、內在聯繫,選擇適當的證明方法,要熟悉各種證法中的推理思維,並掌握相應的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。

大學聯考文科必背數學公式

1、函數的單調性

(1)設x1、x2[a,b],x1x2那麼

f(x1)f(x2)0f(x)在[a,b]上是增函數;

f(x1)f(x2)0f(x)在[a,b]上是減函數.

(2)設函數yf(x)在某個區間內可導,若f(x)0,則f(x)爲增函數;若f(x)0,則f(x)爲減函數.

2、函數的奇偶性

對於定義域內任意的x,都有f(-x)=f(x),則f(x)是偶函數; 對於定義域內任意的x,都有f(x)f(x),則f(x)是奇函數。 奇函數的圖象關於原點對稱,偶函數的圖象關於y軸對稱。

大學聯考文科數學知識點總結2

一、高中數學誘導公式全集:

常用的誘導公式有以下幾組:

公式一:

設α爲任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

設α爲任意角,π+α的三角函數值與α的三角函數值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函數值之間的關係:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關係:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做題時,將a看成銳角來做會比較好做。

誘導公式記憶口訣

※規律總結※

上面這些誘導公式可以概括爲:

對於π/2xk ±α(k∈Z)的三角函數值,

①當k是偶數時,得到α的同名函數值,即函數名不改變;

②當k是奇數時,得到α相應的餘函數值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇變偶不變)

然後在前面加上把α看成銳角時原函數值的符號。

(符號看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4爲偶數,所以取sinα。

當α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號爲“-”。

所以sin(2π-α)=-sinα

上述的記憶口訣是:

奇變偶不變,符號看象限。

公式右邊的符號爲把α視爲銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函數值的符號可記憶

水平誘導名不變;符號看象限。

各種三角函數在四個象限的符號如何判斷,也可以記住口訣“一全正;二正弦(餘割);三兩切;四餘弦(正割)”.

這十二字口訣的意思就是說:

第一象限內任何一個角的四種三角函數值都是“+”;

第二象限內只有正弦是“+”,其餘全部是“-”;

第三象限內切函數是“+”,弦函數是“-”;

第四象限內只有餘弦是“+”,其餘全部是“-”.

上述記憶口訣,一全正,二正弦,三內切,四餘弦

還有一種按照函數類型分象限定正負:

函數類型 第一象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

餘弦 ...........+............—............—............+........

正切 ...........+............—............+............—........

餘切 ...........+............—............+............—........

同角三角函數基本關係

同角三角函數的基本關係式

倒數關係:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的關係:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關係:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函數關係六角形記憶法

六角形記憶法:(參看圖片或參考資料鏈接)

構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形爲模型。

(1)倒數關係:對角線上兩個函數互爲倒數;

(2)商數關係:六邊形任意一頂點上的函數值等於與它相鄰的兩個頂點上函數值的乘積。

(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關係式。

(3)平方關係:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等於下面頂點上的三角函數值的平方。

兩角和差公式

兩角和與差的三角函數公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsin&beta,考試技巧;

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、餘弦和正切公式(升冪縮角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、餘弦和正切公式(降冪擴角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

萬能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

萬能公式推導

附推導:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......x,

(因爲cos^2(α)+sin^2(α)=1)

再把x分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然後用α/2代替α即可。

同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。

三倍角公式

三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推導

附推導:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式聯想記憶

★記憶方法:諧音、聯想

正弦三倍角:3元 減 4元3角(欠債了(被減成負數),所以要“掙錢”(音似“正弦”))

餘弦三倍角:4元3角 減 3元(減完之後還有“餘”)

☆☆注意函數名,即正弦的三倍角都用正弦表示,餘弦的三倍角都用餘弦表示。

★另外的記憶方法:

正弦三倍角: 山無司令 (諧音爲 三無四立) 三指的是"3倍"sinα, 無指的是減號, 四指的是"4倍", 立指的是sinα立方

餘弦三倍角: 司令無山 與上同理

和差化積公式

三角函數的和差化積公式

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

積化和差公式

三角函數的積化和差公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

和差化積公式推導

附推導:

首先,我們知道sin(a+b)=sinaxcosb+cosaxsinb,sin(a-b)=sinaxcosb-cosaxsinb

我們把兩式相加就得到sin(a+b)+sin(a-b)=2sinaxcosb

所以,sinaxcosb=(sin(a+b)+sin(a-b))/2

同理,若把兩式相減,就得到cosaxsinb=(sin(a+b)-sin(a-b))/2

同樣的,我們還知道cos(a+b)=cosaxcosb-sinaxsinb,cos(a-b)=cosaxcosb+sinaxsinb

所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosaxcosb

所以我們就得到,cosaxcosb=(cos(a+b)+cos(a-b))/2

同理,兩式相減我們就得到sinaxsinb=-(cos(a+b)-cos(a-b))/2

這樣,我們就得到了積化和差的四個公式:

sinaxcosb=(sin(a+b)+sin(a-b))/2

cosaxsinb=(sin(a+b)-sin(a-b))/2

cosaxcosb=(cos(a+b)+cos(a-b))/2

sinaxsinb=-(cos(a+b)-cos(a-b))/2

好,有了積化和差的四個公式以後,我們只需一個變形,就可以得到和差化積的四個公式.

我們把上述四個公式中的a+b設爲x,a-b設爲y,那麼a=(x+y)/2,b=(x-y)/2

把a,b分別用x,y表示就可以得到和差化積的.四個公式:

sinx+siny=2sin((x+y)/2)xcos((x-y)/2)

sinx-siny=2cos((x+y)/2)xsin((x-y)/2)

cosx+cosy=2cos((x+y)/2)xcos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)xsin((x-y)/2)

大學聯考文科數學知識點總結3

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函數(30課時,12個)

1.映射;2.函數;3.函數的單調性;4.反函數;5.互爲反函數的函數圖象間的關係;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質;11.對數函數.12.函數的應用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函數(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線;5.同角三角函數的基本關係式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函數、餘弦函數的圖象和性質;10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質;14.已知三角函數值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的座標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關係;8.空間向量及其加法、減法與數乘;9.空間向量的座標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

大學聯考文科數學知識點總結4

三角函數

正角:按逆時針方向旋轉形成的角

1、任意角負角:按順時針方向旋轉形成的角

零角:不作任何旋轉形成的角

2、角的頂點與原點重合,角的始邊與x軸的非負半軸重合,終邊落在第幾象限,則稱爲第幾象限角.

第二象限角的集合爲k36090k360180,k

第三象限角的集合爲k360180k360270,k第四象限角的集合爲k360270k360360,k終邊在x軸上的角的集合爲k180,k

終邊在y軸上的角的集合爲k18090,k終邊在座標軸上的角的集合爲k90,k

第一象限角的集合爲k360k36090,k

3、與角終邊相同的角的集合爲k360,k

4、長度等於半徑長的弧所對的圓心角叫做1弧度.

數學判定與性質區別

1、數學中的判定

判定多用於數學的證明概念,通過事物的本質屬性反映出的本質性質,以此作爲依據推知下一步結論,這個行爲叫做判定。

例如:兩組對邊分別平行的四邊形,叫做平行四邊形,這個作爲已證明的定理,揭示了本質,可以說是“永遠成立”。

以此作爲判定依據,這個依據叫判定定理,我發現一個四邊形的一組對邊平行且相等,那麼可以斷定此四邊形就是平行四邊形,這個行爲叫判定

2、數學性質

數學性質是數學表觀和內在所具有的特徵,一種事物區別於其他事物的屬性。如:平行四邊形的性質:對邊平行,對邊相等,對角線互相平分,中心對稱圖形。

垂直平分線定理

性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

角平分線:把一個角平分的射線叫該角的角平分線。

定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸纔會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

性質定理:角平分線上的點到該角兩邊的距離相等

判定定理:到角的兩邊距離相等的點在該角的角平分線上

大學聯考文科數學知識點總結5

一、集合:

1、子集的定義與重要性質:任何一個集合是它本身的一個子集,即AA。規定空集是任何集合的子集,即A,。如果AB,且BA,則A=B。如果AB且B中至少有一個元素不在A中,則A叫B的真子集,記作A(B。空集是任何非空集合的真子集。含n個元素的集合A的子集有2個,非空子集有2-1個,非空真子集有2-2個。

2、餘集(或補集)的定義與重要性質:,

3、交集、並集的性質:A∩B=AAB,A∪B=A BA,

4、常用數集符號:整數集Z,自然數集N,正整數集,有理數Q,實數集R。

二、基本的初等函數:

1、函數的定義:在某變化過程中有兩個變量x,y並且對於x在某個範圍內的每一個確定的值,按照某個對應法則,y都有唯一確定的值和它對應,那麼y就是x的函數,x叫做自變量,x的取值範圍叫做函數的定義域,和x的值對應的y的值叫做函數值,函數值的集合叫做函數的值域。構成函數的三要素:定義域,值域,對應法則。值域可由定義域唯一確定,因此當兩個函數的定義域和對應法則相同時,值域一定相同,它們可以視爲同一函數。

2、常用函數的作圖與單調性

1)、反比例函數: ,圖象爲雙曲線,1) 當k>0時,f(x)在(-∞,0)與(0,+∞)上都是減函數,2) 當k<0時,f(x)在(-∞,0)與(0,+∞)上都是增函數但要注意在(-∞,0)∪(0,+∞)上f(x)沒有單調性。

2)一次函數y=kx+b(k≠0) ,圖象爲直線,可過兩點作直線,1)當k>0時,f(x)在R上是增函數。2)當k<0時,f(x)在R上是減函數。

3)、二次函數y=ax+bx+c 1)當a>o時,函數f(x)的圖象開口向上,在(-∞,-),+∞)上是增函數,2) 當a<0時,函數f(x)的圖象開口向下,在(-∞,-),+∞)是減函數。圖象爲拋物線,可用五點法(判別式小於0時用三點法)作圖。

三種形式:

附:一元二次方程根與係數的關係:

4)、對鉤函數(一般學生不作要求):,增區間爲,

減區間爲圖象如右:

5)指數函數6)對數函數7)冪函數8)三角函數等見後。

3、奇、偶函數的定義:

性質:(1)奇函數的圖象關於原點對稱,偶函數的圖象關於y軸對稱。(2)奇函數在關於原點的對稱區間上的單調性相同,偶函數在關於原點的對稱區間上的單調性相反。

(3)若奇函數有對稱軸x=a,則它有周期T=4a,偶函數有對稱軸x=a,則它有周期T=2a,

(4)若奇函數在x=0處有定義則f(0)=0,

函數的奇、偶性類型:

(1)奇函數:如

(2)偶函數:如

(3)非奇非偶函數:如

(4)既是奇函數又是偶函數:僅有一類:在定義域關於原點的對稱區間上恆有f(x)=0.

4、對於函數f(x)的定義域內的每個值x都有f(x+T)=f(x)(T(0),則稱f(x)爲周期函數,T爲它的一個週期。若T爲f(x)的週期,則kT也是f(x)的週期,k爲任一非0整數。

若滿足,那麼是周期函數,一個週期是T=||;

5、函數的圖象的對稱性:

1)、關於直線x=a對稱時,f(x)=f(2a-x)或f(a-x)=f(a+x),特例:a=0時,關於y軸對稱,此時 f(x)=f(-x)爲偶函數。

2)、y=f(x)關於(a,b)對稱時,f(x)=2b-f(2a-x),特別a=b=0時, f(x)=-f(-x),即f(x)關於原點對稱,f(x)爲奇函數。

3)、與函數y=f(x)關於直線y=x+b對稱的函數的解析式是,類似有與函數y=f(x)關於直線y=-x+b對稱的函數的解析式是

4)、若f(a+x)=f(b-x),則f(x)的圖像關於直線對稱,

6、平移變換:。對於“從y=f(x)到y=f(x-h)+k”是“左加右減,上加下減”。

7、伸縮變換:將y=f(x)的橫座標變爲原來的a倍,縱座標變爲原來的m倍,得到

8、翻折變換:(1)由y=f(x)得到y=|f(x)|,就是把y=f(x)的圖象在x軸下方的部分作關於x軸對稱的圖象,即把x軸下方的部分翻到x軸上方,而原來x軸上方的部分不變。

(2) 由y=f(x)得到y=f(|x|),就是把y=f(x)的圖象在y軸右邊的部分作關於y軸對稱的圖象,即把y軸右邊的部分翻到y軸的左邊,而原來y軸左邊的部分去掉,右邊的部分不變。

常用數學公式表

乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a

根與係數的關係 X1+X2=-b/a X1xX2=c/a 注:韋達定理

判別式 b2-4a=0 注:方程有相等的兩實根

b2-4ac>0 注:方程有一個實根

b2-4ac<0 注:方程有共軛複數根

三角函數公式

兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數列前n項和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+…n3=n2(n+1)2/4 1x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

餘弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心座標

圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱側面積 S=cxh 斜棱柱側面積 S=cxh

正棱錐側面積 S=1/2cxh 正棱臺側面積 S=1/2(c+c)h

圓臺側面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pixr2

圓柱側面積 S=cxh=2pixh 圓錐側面積 S=1/2xcxl=pixrxl

弧長公式 l=axr a是圓心角的弧度數r >0 扇形面積公式 s=1/2xlxr

錐體體積公式 V=1/3xSxH 圓錐體體積公式 V=1/3xpixr2h

斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側棱長

柱體體積公式 V=sxh 圓柱體 V=pixr2h