幾何的數學定義是什麼

幾何學發展歷史悠長,內容豐富。它和代數、分析、數論等等關係極其密切。下面是本站小編給大家整理的數學幾何的簡介,希望能幫到大家!

幾何的數學定義是什麼
  幾何的數學定義

幾何,就是研究空間結構及性質的一門學科。它是數學中最基本的研究內容之一,與分析、代數等等具有同樣重要的地位,並且關係極爲密切。

幾何學發展歷史悠長,內容豐富。它和代數、分析、數論等等關係極其密切。幾何思想是數學中最重要的一類思想。暫時的數學各分支發展都有幾何化趨向,即用幾何觀點及思想方法去探討各數學理論。常見定理有勾股定理,歐拉定理,斯圖爾特定理等。

  幾何基礎

公理系統原則

人們對《幾何原本》中在邏輯結果方面存在的一些漏洞、破綻的發現,正是推動幾何學不斷向前發展的契機。最後德國數學家希爾伯特在總結前人工作的基礎上,在他1899年發表的《幾何基礎》一書中提出了一個比較完善的幾何學的公理體系。這個公理體系就被叫做希爾伯特公理體。

希爾伯特不僅提出了—個完善的幾何體系,並且還提出了建立一個公理系統的原則。就是在一個幾何公理系統中,採取哪些公理,應該包含多少條公理,應當考慮如下三個方面的問題:

第一,共存性(和諧性),就是在一個公理系統中,各條公理應該是不矛盾的,它們和諧而共存在同一系統中。

第二,獨立性,公理體系中的每條公理應該是各自獨立而互不依附的,沒有一條公理是可以從其它公理引伸出來的。

第三,完備性,公理體系中所包含的公理應該是足夠能證明本學科的任何新命題。

這種用公理系統來定義幾何學中的基本對象和它的關係的研究方法,成了數學中所謂的“公理化方法”,而把歐幾里得在《幾何原本》提出的體系叫做古典公理法。

意義

公理化的方法給幾何學的研究帶來了一個新穎的觀點,在公理法理論中,由於基本對象不予定義,因此就不必探究對象的直觀形象是什麼,只專門研究抽象的對象之間的關係、性質。從公理法的角度看,我們可以任意地用點、線、面代表具體的事物,只要這些具體事物之間滿足公理中的結合關係、順序關係、合同關係等,使這些關係滿足公理系統中所規定的要求,這就構成了幾何學。

因此,凡是符合公理系統的元素都能構成幾何學,每一個幾何學的直觀形象不止只有—個,而是可能有無窮多個,每一種直觀形象我們把它叫做幾何學的解釋,或者叫做某種幾何學的'模型。平常我們所熟悉的幾何圖形,在研究幾何學的時候,並不是必須的,它不過是一種直觀形象而已。

就此,幾何學研究的對象更加廣泛了,幾何學的含義比歐幾里得時代更爲抽象。這些,都對近代幾何學的發展帶來了深遠的影響。

  幾何作圖

尺規作圖

公元前5世紀,雅典的“智者學派”以上述三大問題爲中心,開展研究。正因爲不能用尺規來解決,常常使人闖入新的領域中去。例如激發了圓錐曲線、割圓曲線以及三、四次代數曲線的發現。

17世紀解析幾何建立以後,尺規作圖的可能性纔有了準則。1837年P.L.旺策爾給出三等分任意角和倍立方不可能用尺規作圖的證明,1882年林德曼證明了π的超越性,化圓爲方的不可能性也得以確立。1895年(C.)F.克萊因總結了前人的研究,著《幾何三大問題》(中譯本,1930)一書,給出三大問題不可能用尺規來作圖的簡明證法,徹底解決了兩千多年的懸案。

雖然如此,還是有許多人不管這些證明,想壓倒前人所有的工作。他們宣稱自己已解決了三大問題中的某一個,實際上他們並不瞭解所設的條件和不可解的道理。三大問題不能解決,關鍵在工具的限制,如果不限工具,那就根本不是什麼難題,而且早已解決。例如阿基米德就曾用巧妙的方法三等分任意角。下面爲了敘述簡單,將原題稍加修改。在直尺邊緣上添加一點p,命尺端爲O。設所要三等分的角是∠ACB,以C爲心,Op爲半徑作半圓交角邊於A、B;使O點在CA延線上移動,p點在圓周上移動,當尺通過B時,聯OpB(見圖)。由於Op=pC=CB,易知。

∠COB=1/3∠ACB

這裏使用的工具已不限於尺規,而且作圖方法也與公設不合。另外兩個問題也可以用別的工具解決。

三大問題

古希臘幾何作圖的三大問題是:

①化圓爲方,求作一正方形,使其面積等於一已知圓。

②三等分任意角;③倍立方,求作一立方體,使其體積是一已知立方體的兩倍。這些問題的難處,是作圖只許用直尺(沒有刻度,只能作直線的尺)和圓規。

經過兩千多年的探索,最後才證明在尺規的限制下,根本不可能作出所要求的圖形。