最新高三物理重點知識點總精選五篇分享

在平凡的學習生活中,是不是經常追着老師要知識點?知識點也可以理解爲考試時會涉及到的知識,也就是大綱的分支。爲了幫助大家更高效的學習,下面是小編幫大家整理的最新高三物理重點知識點總精選五篇分享,歡迎閱讀,希望大家能夠喜歡。

最新高三物理重點知識點總精選五篇分享

最新高三物理重點知識點總精選五篇分享1

1、牛頓第一定律(慣性定律):一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種做狀態爲止。

a、只有當物體所受合外力爲零時,物體才能處於靜止或勻速直線運動狀態。

b、力是該變物體速度的原因。

c、力是改變物體運動狀態的原因(物體的速度不變,其運動狀態就不變)

d力是產生加速度的原因。

2、慣性:物體保持勻速直線運動或靜止狀態的性質叫慣性。

a、一切物體都有慣性。

b、慣性的大小由物體的質量決定。

c、慣性是描述物體運動狀態改變難易的物理量。

3、牛頓第二定律:物體的加速度跟所受的合外力成正比,跟物體的質量成反比,加速度的方向跟物體所受合外力的方向相同。

a、數學表達式:a=F合/m。

b、加速度隨力的產生而產生、變化而變化、消失而消失。

c、當物體所受力的方向和運動方向一致時,物體加速。當物體所受力的方向和運動方向相反時,物體減速。

d、力的單位牛頓的定義:使質量爲1kg的物體產生1m/s2加速度的力,叫1N。

4、牛頓第三定律:物體間的作用力和反作用總是等大、反向、作用在同一條直線上的。

a、作用力和反作用力同時產生、同時變化、同時消失。

b、作用力和反作用力與平衡力的根本區別是作用力和反作用力作用在兩個相互作用的物體上,平衡力作用在同一物體上。

最新高三物理重點知識點總精選五篇分享2

  光子說

⑴量子論:1900年德國物理學家普朗克提出:電磁波的發射和吸收是不連續的,而是一份一份的,每一份電磁波的能量。

⑵光子論:1905年愛因斯坦提出:空間傳播的光也是不連續的,而是一份一份的,每一份稱爲一個光子,光子具有的能量與光的頻率成正比。

  光的波粒二象性

光既表現出波動性,又表現出粒子性。大量光子表現出的波動性強,少量光子表現出的粒子性強;頻率高的光子表現出的粒子性強,頻率低的光子表現出的波動性強。

實物粒子也具有波動性,這種波稱爲德布羅意波,也叫物質波。滿足下列關係:

從光子的概念上看,光波是一種概率波。

最新高三物理重點知識點總精選五篇分享3

  摩擦力

1、定義:當一個物體在另一個物體的表面上相對運動(或有相對運動的趨勢)時,受到的阻礙相對運動(或阻礙相對運動趨勢)的力,叫摩擦力,可分爲靜摩擦力和滑動摩擦力。

2、產生條件:①接觸面粗糙;②相互接觸的物體間有彈力;③接觸面間有相對運動(或相對運動趨勢)。

說明:三個條件缺一不可,特別要注意“相對”的理解。

3、摩擦力的方向:

①靜摩擦力的方向總跟接觸面相切,並與相對運動趨勢方向相反。

②滑動摩擦力的方向總跟接觸面相切,並與相對運動方向相反。

說明:(1)“與相對運動方向相反”不能等同於“與運動方向相反”。

滑動摩擦力方向可能與運動方向相同,可能與運動方向相反,可能與運動方向成一夾角。

(2)滑動摩擦力可能起動力作用,也可能起阻力作用。

4、摩擦力的大小:

(1)靜摩擦力的大小:

①與相對運動趨勢的強弱有關,趨勢越強,靜摩擦力越大,但不能超過靜摩擦力,即0≤f≤fm但跟接觸面相互擠壓力FN無直接關係。具體大小可由物體的運動狀態結合動力學規律求解。

②靜摩擦力略大於滑動摩擦力,在中學階段討論問題時,如無特殊說明,可認爲它們數值相等。

③效果:阻礙物體的相對運動趨勢,但不一定阻礙物體的運動,可以是動力,也可以是阻力。

(2)滑動摩擦力的大小:

滑動摩擦力跟壓力成正比,也就是跟一個物體對另一個物體表面的垂直作用力成正比。

公式:F=μFN(F表示滑動摩擦力大小,FN表示正壓力的大小,μ叫動摩擦因數)。

說明:①FN表示兩物體表面間的壓力,性質上屬於彈力,不是重力,更多的情況需結合運動情況與平衡條件加以確定。

②μ與接觸面的材料、接觸面的情況有關,無單位。

③滑動摩擦力大小,與相對運動的速度大小無關。

5、摩擦力的效果:總是阻礙物體間的相對運動(或相對運動趨勢),但並不總是阻礙物體的運動,可能是動力,也可能是阻力。

說明:滑動摩擦力的大小與接觸面的大小、物體運動的速度和加速度無關,只由動摩擦因數和正壓力兩個因素決定,而動摩擦因數由兩接觸面材料的性質和粗糙程度有關。

  動量守恆

所謂“動量守恆”,意指“動量保持恆定”。考慮到“動量改變”的原因是“合外力的衝”所致,所以“動量守恆條件”的直接表述似乎應該是“合外力的衝量爲O”。但在動量守恆定律的實際表述中,其“動量守恆條件”卻是“合外力爲。”。究其原因,實際上可以從如下兩個方面予以解釋。

(1)“條件表述”應該針對過程

考慮到“衝量”是“力”對“時間”的累積,而“合外力的衝量爲O”的相應條件可以有三種不同的情況與之對應:第一,合外力爲O而時間不爲O;第二,合外力不爲0而時間爲。;第三,合外力與時間均爲。顯然,對應於後兩種情況下的相應表述沒有任何實際意義,因爲在“時間爲。”的相應條件下討論動量守恆,實際上就相當於做出了一個毫無價值的無效判斷―“此時的動量等於此時的動量”。這就是說:既然動量守恆定律針對的是系統經歷某一過程而在特定條件下動量保持恆定,那麼相應的條件就應該針對過程進行表述,就應該回避“合外力的衝量爲O”的相應表述中所包含的那兩種使“過程”退縮爲“狀態”的'無價值狀況

(2)“條件表述”須精細到狀態

考慮到“衝量”是“過程量”,而作爲“過程量”的“合外力的衝量”即使爲。,也不能保證系統的動量在某一過程中始終保持恆定。因爲完全可能出現如下狀況,即:在某一過程中的前一階段,系統的動量發生了變化;而在該過程中的後一階段,系統的動量又發生了相應於前一階段變化的逆變化而恰好恢復到初狀態下的動量。對應於這樣的過程,系統在相應過程中“合外力的衝量”確實爲O,但卻不能保證系統動量在過程中保持恆定,充其量也只是保證了系統在過程的始末狀態下的動量相同而已,這就是說:既然動量守恆定律針對的是系統經歷某一過程而在特定條件下動量保持恆定,那麼相應的條件就應該在針對過程進行表述的同時精細到過程的每一個狀態,就應該回避“合外力的衝量爲。”的相應表述只能夠控制“過程”而無法約束“狀態

‘彈性正碰”的“定量研究”

“彈性正碰”的“碰撞結果”

質量爲跳,和m:的小球分別以vl。和跳。的速度發生彈性正碰,設碰後兩球的速度分別爲二,和二2,則根據碰撞過程中動量守恆和彈性碰撞過程中系統始末動能相等的相應規律依次可得。

“碰撞結果”的“表述結構”

作爲“碰撞結果”,碰後兩個小球的速度表達式在結構上具備瞭如下特徵,即:若把任意一個小球的碰後速度表達式中的下標作“1”與“2”之間的代換,則必將得到另一個小球的碰後速度表達式。“碰撞結構”在“表述結構”上所具備的上述特徵,其緣由當追溯到“彈性正碰”所遵循的規律表達的結構特徵:在碰撞過程動量守恆和碰撞始末動能相等的兩個方程中,若針對下標作“1”與“2”之間的代換,則方程不變。

“動量”與“動能”的切入點

“動量”和“動能”都是從動力學角度描述機械運動狀態的參量,若在其間作細緻的比對和深人的剖析,則區別是顯然的:動量決定着物體克服相同阻力還能夠運動多久,動能決定着物體克服相同阻力還能夠運動多遠;動量是以機械運動量化機械運動,動能則是以機械運動與其他運動的關係量化機械運動。

最新高三物理重點知識點總精選五篇分享4

(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;

(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。

(3)萬有引力

1、開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:週期,K:常量(與行星質量無關,取決於中心天體的質量)}

2、萬有引力定律:F=Gm1m2/r2(G=6.67×10—11N?m2/kg2,方向在它們的連線上)

3、天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天體半徑(m),M:天體質量(kg)}

4、衛星繞行速度、角速度、週期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}

5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6、地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}

注:

(1)天體運動所需的向心力由萬有引力提供,F向=F萬;

(2)應用萬有引力定律可估算天體的質量密度等;

(3)地球同步衛星只能運行於赤道上空,運行週期和地球自轉週期相同;

(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、週期變小(一同三反);

(5)地球衛星的環繞速度和最小發射速度均爲7.9km/s。

最新高三物理重點知識點總精選五篇分享5

  一、用動量定理解釋生活中的現象

[例1]

豎立放置的粉筆壓在紙條的一端。要想把紙條從粉筆下抽出,又要保證粉筆不倒,應該緩緩、小心地將紙條抽出,還是快速將紙條抽出?說明理由。

[解析]

紙條從粉筆下抽出,粉筆受到紙條對它的滑動摩擦力μmg作用,方向沿着紙條抽出的方向。不論紙條是快速抽出,還是緩緩抽出,粉筆在水平方向受到的摩擦力的大小不變。在紙條抽出過程中,粉筆受到摩擦力的作用時間用t表示,粉筆受到摩擦力的衝量爲μmgt,粉筆原來靜止,初動量爲零,粉筆的末動量用mv表示。根據動量定理有:μmgt=mv。

如果緩慢抽出紙條,紙條對粉筆的作用時間比較長,粉筆受到紙條對它摩擦力的衝量就比較大,粉筆動量的改變也比較大,粉筆的底端就獲得了一定的速度。由於慣性,粉筆上端還沒有來得及運動,粉筆就倒了。

如果在極短的時間內把紙條抽出,紙條對粉筆的摩擦力衝量極小,粉筆的動量幾乎不變。粉筆的動量改變得極小,粉筆幾乎不動,粉筆也不會倒下。

  二、用動量定理解曲線運動問題

[例2]

以速度v0水平拋出一個質量爲1kg的物體,若在拋出後5s未落地且未與其它物體相碰,求它在5s內的動量的變化。(g=10m/s2)。

[解析]

此題若求出末動量,再求它與初動量的矢量差,則極爲繁瑣。由於平拋出去的物體只受重力且爲恆力,故所求動量的變化等於重力的衝量。則

Δp=Ft=mgt=1×10×5=50kg·m/s。

[點評]

①運用Δp=mv—mv0求Δp時,初、末速度必須在同一直線上,若不在同一直線,需考慮運用矢量法則或動量定理Δp=Ft求解Δp。

②用I=F·t求衝量,F必須是恆力,若F是變力,需用動量定理I=Δp求解I。

  三、用動量定理解決打擊、碰撞問題

打擊、碰撞過程中的相互作用力,一般不是恆力,用動量定理可只討論初、末狀態的動量和作用力的衝量,不必討論每一瞬時力的大小和加速度大小問題。

[例3]

蹦牀是運動員在一張繃緊的彈性網上蹦跳、翻滾並做各種空中動作的運動項目。一個質量爲60kg的運動員,從離水平網面3。2m高處自由落下,觸網後沿豎直方向蹦回到離水平網面1。8m高處。已知運動員與網接觸的時間爲1。4s。試求網對運動員的平均衝擊力。(取g=10m/s2)

[解析]

將運動員看成質量爲m的質點,從高h1處下落,剛接觸網時速度方向向下,大小。

彈跳後到達的高度爲h2,剛離網時速度方向向上,接觸過程中運動員受到向下的重力mg和網對其向上的彈力F。

選取豎直向上爲正方向,由動量定理得:

由以上三式解得:

代入數值得:F=1。2×103N

  四、用動量定理解決連續流體的作用問題

在日常生活和生產中,常涉及流體的連續相互作用問題,用常規的分析方法很難奏效。若構建柱體微元模型應用動量定理分析求解,則曲徑通幽,“柳暗花明又一村”。